Innervation of the muscularis externa in the stomach of a coral fish, Chelmon rostratus Cuvier. 1980

C K Tan, and W C Wong

The muscularis externa of the stomach of the coral fish, Chelmon rostratus Cuvier, consists of four discrete layers - an outermost longitudinal layer followed by a circular, an oblique and an innermost layer. The muscle bundles of the oblique layer appear to be surrounded by thin prolongations of the innermost layer. In longitudinal sections of the innermost layer only rarely were small bundles of unmyelinated axons seen to course between the muscle cells. Vesiculated axon profiles within such nerve bundles occasionally came into apposition with the surface of muscle cells. The number of cross sectioned muscle fibres counted in the oblique, circular and longitudinal layers was 1365, 1408 and 745 respectively. The number of nerve bundles (single and multiple axon profiles) per 1000 muscle fibres was 62 (oblique layer), 30 (circular layer) and 28 (longitudinal layer). Single axon profiles comprised 51% (oblique layer), 36% (circular layer) and 10% (longitudinal layer). The number of axon profiles in the nerve bundles varied between 2 and 43. Nerve bundles containing 2-5 axon profiles formed 43% (oblique layer), 55% (circular layer) and 38% (longitudinal layer) of all nerve bundles. Vesiculated axon profiles within the nerve bundles made up approximatey 55% (oblique layer), 41% (circular layer) and 28% (longitudinal layer). Axon profiles containing round agranular vesicles (AGVs) comprised 35% (oblique layer), 30% (circular layer) and 10% (longitudinal layer). Axon profiles containing large granulated vesicles (LGVs) comprised 54% (oblique layer), 60% (circular layer) and 85% (longitudinal layer). Axon profiles containing flattened vesicles comprised 11% (oblique and circular layers) and 5% (longitudinal layer). The neuromuscular junctional gaps between vesiculated axon profiles and the surfaces of muscle cells varied between 11-270 nm (oblique layer), 11-290 nm (circular layer) and 31-110 nm (longitudinal layer). Gaps of 11-30 nm formed 48% and 22% in the oblique and circular layers, respectively. In the oblique layer such gaps were made up of 48% of AGVs, 50% of LGVs and 46% of FVs. The corresponding figures in the circular layer were 18%, 35% and 33%. The majority of vesiculated axon profiles contacted one muscle cell. Vesiculated axon profiles contacting two muscle cells comprised 31% (oblique layer) and 21% (circular layer). Vesiculated profiles contacting three muscle cells comprised 7% (oblique layer) and 21% (circular layer). Rarely, an axon profile contacted four muscle cells. An innervated muscle cell was usually contacted by a single axon profile but there were cases where two or even three axon profiles made contact with a single muscle cell.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013270 Stomach An organ of digestion situated in the left upper quadrant of the abdomen between the termination of the ESOPHAGUS and the beginning of the DUODENUM. Stomachs

Related Publications

C K Tan, and W C Wong
August 1974, Okajimas folia anatomica Japonica,
C K Tan, and W C Wong
March 1975, Okajimas folia anatomica Japonica,
C K Tan, and W C Wong
August 1974, Okajimas folia anatomica Japonica,
C K Tan, and W C Wong
December 1987, Okajimas folia anatomica Japonica,
C K Tan, and W C Wong
August 2017, Journal of clinical and diagnostic research : JCDR,
C K Tan, and W C Wong
May 2016, Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis,
C K Tan, and W C Wong
January 1982, Scandinavian journal of gastroenterology. Supplement,
C K Tan, and W C Wong
April 1975, Comparative biochemistry and physiology. C: Comparative pharmacology,
C K Tan, and W C Wong
June 1985, Zhonghua bing li xue za zhi = Chinese journal of pathology,
C K Tan, and W C Wong
January 2012, Diseases of the esophagus : official journal of the International Society for Diseases of the Esophagus,
Copied contents to your clipboard!