Development of chick paravertebral sympathetic ganglia. I. Fine structure and correlative histofluorescence of catecholaminergic cells. 1980

L Luckenbill-Edds, and C van Horn

Paravertebral sympathetic ganglia from the lumbosacral region of a series of chick embryos have been studied with electron microscopic methods, including aldehyde-osmium and permanganate fixatives, and correlative histofluorescence (Grillo et al, '74). Our purpose was to assess the differentiation of catecholaminergic (CA) cells during histogenesis in ovo. Examination of comparable adult ganglia as a baseline for differentiating stages confirmed that the principal sympathetic neuron (PN) is similar to those of other species in that it contains predominately small dense-cored vesicles (SDCV) preserved only by permanganate, and does not histofluoresce following the method of Grillo et al. ('74). At embryonic day (E) 7--8, when ganglia have just formed, areas fluorescing bright yellow-green are correlated with two types of cells: 1) Neuroblasts with vesicular nuclei and large dense-cored vesicles (LDCV) are common. As the neuroblasts grow and differentiate, LDCV move away from perikaryal cytoplasm into developing processes. Around E13-15, LDCV appear in the neuroblasts which continue to develop until they resemble miniature adult PN in late embryos and hatchlings. 2) Granule (GR) cells with clumped chromatin and sparse cytoplasm are clustered in te ganglionic periphery at E7-8, but are rare. The GR cells increase somewhat in size and numbers by E11, but retail essentially the same characteristics as at earlier stages. Neither bright fluorescence nor GR cells appear later than stages E13-15. These results are interpreted to mean that when chick sympathetic stem cells have migrated from the primary ganglia into the paravertebral ganglia, they give rise to two separate lines of CA cells, one of which is not maintained and subsequently disappears. The results are significant as a basis for understanding how a mixed population of CA cells might arise within sympathetic ganglia in situ.

UI MeSH Term Description Entries
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013572 Synaptic Vesicles Membrane-bound compartments which contain transmitter molecules. Synaptic vesicles are concentrated at presynaptic terminals. They actively sequester transmitter molecules from the cytoplasm. In at least some synapses, transmitter release occurs by fusion of these vesicles with the presynaptic membrane, followed by exocytosis of their contents. Synaptic Vesicle,Vesicle, Synaptic,Vesicles, Synaptic

Related Publications

L Luckenbill-Edds, and C van Horn
August 1986, Journal of morphology,
L Luckenbill-Edds, and C van Horn
June 1982, Brain research,
L Luckenbill-Edds, and C van Horn
December 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
L Luckenbill-Edds, and C van Horn
December 1997, Annals of the New York Academy of Sciences,
L Luckenbill-Edds, and C van Horn
May 1997, The Journal of comparative neurology,
L Luckenbill-Edds, and C van Horn
February 2015, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
L Luckenbill-Edds, and C van Horn
January 1982, Developmental neuroscience,
Copied contents to your clipboard!