The metabolism of exogenous fatty acids by preimplantation mouse embryos developing in vitro. 1980

N Hillman, and T J Flynn

The utilization of fatty acids from the culture medium has been examined in preimplantation mouse embryos developing in vitro. Incorporation of exogenous fatty acid into embryo lipids was examined by culturing 8-cell mouse embryos for 2h in a medium containing 0.1 mM [9, 10-3H]palmitic acid (900 mCi/mmol). Lipids were extracted from the embryos, and the total lipid extract was fractionated into various neutral lipid and polar lipid classes by thin-layer chromatography. Most of the radioactivity, over 93%, was recovered in neutral glycerides (mono- di-, and triacylglycerols). About 2% of the total radioactivity was recovered in other neutral lipid species including fatty acids, fatty alcohols, and sterol esters. The remainder of the radioactivity was recovered in polar lipids. Seventy-four per cent of the polar lipid radioactivity was present in the amine phosphatides, inositol and/or serine phosphatides, sphingomyelin, choline lysophosphatides, sulfatides, cerebrosides, and monoglycosylglycerides. Chemical degradation studies of labelled embryo lipids indicated that the tritium lable was entering into embryo lipids as the fatty acid and not via metabolic recycling. The oxidation of exogenous fatty acids by mouse embryos was assessed by incubating variously staged embryos for 4h in medium containing 0.1 mM [U-14C]palmitic acid (50 mCi/mmol) and quantitating the production of 14CO2. The rate of fatty acid oxidation was found to be relatively constant from the unfertilized egg up to the 8-cell stage and then increase significantly between the 8-cell and late blastocyst stages. The results suggest that preimplantation mouse embryos developing in vitro can utilize fatty acids from the medium both for incorporation into embryo lipids and for energy production via oxidation.

UI MeSH Term Description Entries
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010169 Palmitic Acids A group of 16-carbon fatty acids that contain no double bonds. Acids, Palmitic
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

N Hillman, and T J Flynn
October 1977, Experientia,
N Hillman, and T J Flynn
May 1973, Biology of reproduction,
N Hillman, and T J Flynn
January 1986, Progress in clinical and biological research,
N Hillman, and T J Flynn
March 2006, Human reproduction (Oxford, England),
N Hillman, and T J Flynn
January 1985, Australian journal of biological sciences,
N Hillman, and T J Flynn
January 1985, Nihon Sanka Fujinka Gakkai zasshi,
N Hillman, and T J Flynn
January 1989, Molecular reproduction and development,
N Hillman, and T J Flynn
January 1987, Annales de biologie clinique,
N Hillman, and T J Flynn
September 1993, The Japanese journal of human genetics,
Copied contents to your clipboard!