The uptake of 3-deoxy-3-fluoro-D-glucose by synaptosomes from rat brain cortex. 1980

D M Halton, and N F Taylor, and D P Lopes

D-[3-3H]-3-deoxy-3-fluoroglucose was synthesized chemically and shown to be transported into rat brain synaptosomes by a saturable process with a Km 6.2 x 10(-4) M and a Vmax 2.8 nmole x mg protein-1. After an initial, rapid period of transport, further uptake of the fluorosugar is restricted by the rate of its phosphorylation. Both D-glucose and cytochalasin B are competitive inhibitors of 3-deoxy-3-fluoro-D-glucose transport with Ki values of 93 micron and 6.0 x 10(-7) M, respectively. Phloretin, N-ethylmaleimide and p-chloromercuribenzoate also inhibit the fluorosugar uptake, whereas ouabain and changes in K+, Na+, Mg2+ and Ca2+ ions have only a small effect. The recorded 3-deoxy-3-fluoro-D-glucose influx is slightly reduced by potassium cyanide, antimycin A, 2,4-dinitrophenol, and rotenone. The uptake reduction caused by these four reagents is relieved by the addition of exogenous ATP. The possible influence of hexokinse activity on the uptake process is discussed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003837 Deoxy Sugars Sugars that in which one or more hydroxyl groups of the pyranose or furanose ring is substituted by hydrogen. Deoxy Sugar,Sugar, Deoxy,Sugars, Deoxy
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013574 Synaptosomes Pinched-off nerve endings and their contents of vesicles and cytoplasm together with the attached subsynaptic area of the membrane of the post-synaptic cell. They are largely artificial structures produced by fractionation after selective centrifugation of nervous tissue homogenates. Synaptosome

Related Publications

D M Halton, and N F Taylor, and D P Lopes
January 1979, Journal of neuroscience research,
D M Halton, and N F Taylor, and D P Lopes
January 1977, Biochimica et biophysica acta,
D M Halton, and N F Taylor, and D P Lopes
August 1977, Journal of neurochemistry,
D M Halton, and N F Taylor, and D P Lopes
December 1970, FEBS letters,
D M Halton, and N F Taylor, and D P Lopes
December 1971, The Journal of pharmacy and pharmacology,
D M Halton, and N F Taylor, and D P Lopes
June 1983, European journal of cancer & clinical oncology,
D M Halton, and N F Taylor, and D P Lopes
February 1991, NMR in biomedicine,
D M Halton, and N F Taylor, and D P Lopes
July 1990, The Journal of biological chemistry,
D M Halton, and N F Taylor, and D P Lopes
June 1976, Journal of neurochemistry,
D M Halton, and N F Taylor, and D P Lopes
November 1984, The American journal of physiology,
Copied contents to your clipboard!