Regulation of lung surfactant cholesterol metabolism by serum lipopoteins. 1980

M A Hass, and W J Longmore

The isolated perfused rat lung was used as an experimental model in the study of the lipoprotein regulation of surfactant cholesterol metabolism. Addition of low density lipoproteins (LDL) to the perfusion medium at a cholesterol concentration of 0.5 micrometer had no inhibitory effect on [1-14C]-acetate incorporation into cholesterol of either the surfactant or residual fractions. Increasing the concentration of cholesterol in the medium to 2.5 micrometer resulted in significant inhibition of incorporation into cholesterol of both fractions. A similar inhibition resulted when lungs were perfused with 2.5 micrometer cholesterol in the form of high density lipoproteins (HDL). No inhibition of fatty acid synthesis, measured as incorporation into cholesteryl esters, was observed. The rate of uptake by perfused lung of cholesterol from both high and low density lipoproteins was similar. Competitive binding studies with 125I-labeled lipoproteins indicated the existence of lung receptors for both classes of lipoprotein. The rate of uptake of the apoprotein moiety of low density lipoproteins was significantly greater than that of high density lipoproteins. These data suggest that lung cholesterol metabolism may be subject to regulation by both low and high density serum lipoproteins.

UI MeSH Term Description Entries
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008297 Male Males
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D000085 Acetates Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure. Acetate,Acetic Acid Esters,Acetic Acids,Acids, Acetic,Esters, Acetic Acid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M A Hass, and W J Longmore
February 2013, Biochimica et biophysica acta,
M A Hass, and W J Longmore
January 1988, Agents and actions. Supplements,
M A Hass, and W J Longmore
January 1979, Bulletin europeen de physiopathologie respiratoire,
M A Hass, and W J Longmore
June 2012, Biochemical and biophysical research communications,
M A Hass, and W J Longmore
January 1999, Journal of cellular biochemistry,
M A Hass, and W J Longmore
December 1989, The American journal of physiology,
M A Hass, and W J Longmore
June 1990, The American journal of physiology,
M A Hass, and W J Longmore
May 1970, The New England journal of medicine,
M A Hass, and W J Longmore
January 1997, The American journal of physiology,
M A Hass, and W J Longmore
January 2004, Sub-cellular biochemistry,
Copied contents to your clipboard!