Electrically silent cotransport on Na+, K+ and Cl- in Ehrlich cells. 1980

P Geck, and C Pietrzyk, and B C Burckhardt, and B Pfeiffer, and E Heinz

A cotransport system for Na+, K+ and Cl- in Ehrlich cells is described. It is insensitive towards ouabain but specifically inhibited by furosemide and other 'high ceiling' diuretics at concentrations which do not affect other pathways of the ions concerned. As the furosemide-sensitive fluxes of these ions are no affected by changes in membrane potential, and as their complete inhibition by furosemide does not appreciably alter the membrane potential, they appear to be electrically silent. Application of the pulse-response methods in terms of irreversible thermodynamics reveals tight coupling between the furosemide-sensitive flows of Na+, K+ and Cl- (q close to unity for all three combinations) at a stoichiometry of 1: 1 : 2. The site for each of the ions appears to be rather specific: K+ can be replaced by Rb+ but not by other cations tested whereas Cl- can be poorly replaced by Br- but not by NO(-)3, in contradistinction to the Cl(-)-OH- exchange system. The cotransport system appears to function in cell volume regulatin as it tends to make the cell swell, thus counteracting the shrinking effect of the ouabain-sensitive (Na+, K+) pump. The experiments presented could not clarify whether the cotransport process is a primary or secondary active one; while incongruence between transport and conjugated driving force seems to indicate primary active transport, it is very unlikely that hydrolysis of ATP supplies energy for the transport process, since thre is not stimulation of ATP turnover observable under operation of the cotransport system.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002286 Carcinoma, Ehrlich Tumor A transplantable, poorly differentiated malignant tumor which appeared originally as a spontaneous breast carcinoma in a mouse. It grows in both solid and ascitic forms. Ehrlich Ascites Tumor,Ascites Tumor, Ehrlich,Ehrlich Tumor Carcinoma,Tumor, Ehrlich Ascites
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D005665 Furosemide A benzoic-sulfonamide-furan. It is a diuretic with fast onset and short duration that is used for EDEMA and chronic RENAL INSUFFICIENCY. Frusemide,Fursemide,Errolon,Frusemid,Furanthril,Furantral,Furosemide Monohydrochloride,Furosemide Monosodium Salt,Fusid,Lasix
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

P Geck, and C Pietrzyk, and B C Burckhardt, and B Pfeiffer, and E Heinz
June 1985, Federation proceedings,
P Geck, and C Pietrzyk, and B C Burckhardt, and B Pfeiffer, and E Heinz
March 1996, Nihon rinsho. Japanese journal of clinical medicine,
P Geck, and C Pietrzyk, and B C Burckhardt, and B Pfeiffer, and E Heinz
January 1991, Sheng li ke xue jin zhan [Progress in physiology],
P Geck, and C Pietrzyk, and B C Burckhardt, and B Pfeiffer, and E Heinz
August 1992, Comparative biochemistry and physiology. Comparative physiology,
P Geck, and C Pietrzyk, and B C Burckhardt, and B Pfeiffer, and E Heinz
March 1989, The American journal of physiology,
P Geck, and C Pietrzyk, and B C Burckhardt, and B Pfeiffer, and E Heinz
May 1993, Annals of the New York Academy of Sciences,
P Geck, and C Pietrzyk, and B C Burckhardt, and B Pfeiffer, and E Heinz
June 1996, Kidney international,
P Geck, and C Pietrzyk, and B C Burckhardt, and B Pfeiffer, and E Heinz
September 1999, The American journal of physiology,
P Geck, and C Pietrzyk, and B C Burckhardt, and B Pfeiffer, and E Heinz
October 1995, The American journal of physiology,
P Geck, and C Pietrzyk, and B C Burckhardt, and B Pfeiffer, and E Heinz
January 1985, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!