The glucose transport activity of human erythrocyte membranes. Reconstitution in phospholipid liposomes and fractionation by molecular sieve and ion exchange chromatography. 1980

G Fröman, and F Acevedo, and P Lundahl, and S Hjertén

Human erythrocyte membranes, at a protein concentration of 1-2 g/l, were solubilized with 0.12 M cholate in the presence of 0.06 M phospholipid (egg yolk phospholipids or phosphatidylcholine). More than 40% of the protein was solubilized. Cholate was removed by molecular sieve chromatography, whereby liposomes formed. These liposomes exchanged D-glucose faster than L-glucose. The recovery of glucose transport activity in the reconstituted system was estimated to be higher than 16%. The liposomes were heterogenous in size, as shown by molecular sieve chromatography on Sepharose 4B, and small liposomes predominated. In liposomes formed with phosphatidylcholine, the distribution of glucose transport activity did not parallel the distribution of protein or phospholipid, and the activity was found mainly in the smallest liposomes. The proteins were incorporated mainly in the liposomes that eluted at the lowest ionic strength upon ion exchange chromatography. The glucose transport activity separated into three main peaks upon ion exchange chromatography of egg yolk phospholipid liposomes. The activity eluted at low ionic strength. The liposomes contained proteins mainly from the 3- and 4.5-regions (nomenclature according to Steck, T.L. (1974) J. Cell Biol. 62, 1-19). The activity peaks were highest in the first part of the chromatogram. The protein distribution did not coincide with the variation in activity over each peak. Therefore, it cannot be excluded that a minor component not seen in the electrophoretic analyses might be responsible for the glucose transport activity.

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D002793 Cholic Acids The 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholanic acid family of bile acids in man, usually conjugated with glycine or taurine. They act as detergents to solubilize fats for intestinal absorption, are reabsorbed by the small intestine, and are used as cholagogues and choleretics. Cholalic Acids,Acids, Cholalic,Acids, Cholic
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill

Related Publications

G Fröman, and F Acevedo, and P Lundahl, and S Hjertén
July 1967, The Biochemical journal,
G Fröman, and F Acevedo, and P Lundahl, and S Hjertén
July 1982, FEBS letters,
G Fröman, and F Acevedo, and P Lundahl, and S Hjertén
April 1978, Analytical biochemistry,
G Fröman, and F Acevedo, and P Lundahl, and S Hjertén
August 1983, Biochimica et biophysica acta,
G Fröman, and F Acevedo, and P Lundahl, and S Hjertén
July 1968, Analytical biochemistry,
G Fröman, and F Acevedo, and P Lundahl, and S Hjertén
March 1990, Biochimica et biophysica acta,
G Fröman, and F Acevedo, and P Lundahl, and S Hjertén
December 2004, Bioprocess and biosystems engineering,
G Fröman, and F Acevedo, and P Lundahl, and S Hjertén
October 2005, Journal of chromatography. A,
Copied contents to your clipboard!