Somitogenesis in cultured embryos of the Japanese quail, Coturnix coturnix japonica. 1980

D S Packard

The ability of unsegmented paraxial mesoderm from Japanese quail embryos to form somites was studied by culturing pieces of embryos, containing the segmental plates, on an agar medium. In the first experiments, two explants were prepared from each donor embryo. Both explants contained a segmental plate and neural tube, but only one contained notochord. The explants containing notochord formed 11.4 +/- 2.1 somites, while the explants without notochord formed 11.1 +/- 1.3 somites. It was concluded that explants containing Japanese quail segmental plates readily form somites in culture and that the continued presence of the notochord is not required for these somites to form. In a second series of experiments, one explant from each donor embryo contained neural tube and notochord along with the segmental plate, while the corresponding explant did not contain axial structures. The results, which were similar to those obtained in the first experiments, indicated that neither neural tube nor notochord is required for somitogenesis in vitro. Additional experiments demonstrated that bilateral symmetry extends to the unsegmented somite mesoderm, where there was a strong tendency for each segmental plate of a given embryo to form the same number of somites. It was also shown that over a three-fold range of segmental plate length, there was only a slight tendency for shorter segmental plates to make fewer somites. It was estimated that Japanese quail embryos having five to 21 pairs of somites have segmental plates that represent 11.3 +/- 2.9 prospective somites each.

UI MeSH Term Description Entries
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D009672 Notochord A cartilaginous rod of mesodermal cells at the dorsal midline of all CHORDATE embryos. In lower vertebrates, notochord is the backbone of support. In the higher vertebrates, notochord is a transient structure, and segments of the vertebral column will develop around it. Notochord is also a source of midline signals that pattern surrounding tissues including the NEURAL TUBE development. Chordamesoderm,Chordamesoderms,Notochords
D011784 Quail Common name for two distinct groups of BIRDS in the order GALLIFORMES: the New World or American quails of the family Odontophoridae and the Old World quails in the genus COTURNIX, family Phasianidae. Quails
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D003370 Coturnix A genus of BIRDS in the family Phasianidae, order GALLIFORMES, containing the common European and other Old World QUAIL. Japanese Quail,Coturnix japonica,Japanese Quails,Quail, Japanese,Quails, Japanese
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D046508 Culture Techniques Methods of maintaining or growing biological materials in controlled laboratory conditions. These include the cultures of CELLS; TISSUES; organs; or embryo in vitro. Both animal and plant tissues may be cultured by a variety of methods. Cultures may derive from normal or abnormal tissues, and consist of a single cell type or mixed cell types. Culture Technique,Technique, Culture,Techniques, Culture

Related Publications

D S Packard
January 2003, Avian diseases,
D S Packard
October 1971, British poultry science,
D S Packard
January 1974, Poultry science,
D S Packard
August 1971, Comparative biochemistry and physiology. B, Comparative biochemistry,
Copied contents to your clipboard!