Metabolism of very low density lipoproteins in diet induced hypercholesterolemic pigtail monkeys (Macaca nemestrina). 1980

R S Kushwaha, and W R Hazzard

Cholesterol-fed male pigtail monkeys were used to determine the metabolic mechanism of dietary hypercholesterolemia. Cholesterol feeding (200--400 mg/day) in monkeys produced a moderate hypercholesterolemia, which progressed with time and after 15 months the plasma cholesterol levels were raised 8-fold. The initial rise in plasma cholesterol was due to an increase in low density lipoproteins (LDL), but later the increases in intermediate (IDL) and very low (VLDL) density lipoproteins were mainly responsible for the rise in plasma cholesterol. To determine the metabolic mechanism, animals, both before and after cholesterol feeding, were co-injected with 131I-labelled VLDL from normal and 125I-labelled VLDL from cholesterol-fed donors. The fractional catabolic rate of autologous VLDL apolipoprotein B, which decayed biphasically, depended upon the dietary status of the recipient animal. The decrease in fractional catabolic rate was due to more VLDL apolipoprotein B being metabolized by the slower second phase. Normal VLDL apolipoprotein B in cholesterol-fed animals was catabolized by the slower second phase to a greater proportion than that in normal animals, where it was mainly transferred to LDL.

UI MeSH Term Description Entries
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008079 Lipoproteins, VLDL A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues. Pre-beta-Lipoprotein,Prebeta-Lipoprotein,Prebeta-Lipoproteins,Very Low Density Lipoprotein,Very-Low-Density Lipoprotein,Very-Low-Density Lipoproteins,Lipoprotein VLDL II,Lipoproteins, VLDL I,Lipoproteins, VLDL III,Lipoproteins, VLDL1,Lipoproteins, VLDL2,Lipoproteins, VLDL3,Pre-beta-Lipoproteins,Lipoprotein, Very-Low-Density,Lipoproteins, Very-Low-Density,Pre beta Lipoprotein,Pre beta Lipoproteins,Prebeta Lipoprotein,Prebeta Lipoproteins,VLDL Lipoproteins,VLDL1 Lipoproteins,VLDL2 Lipoproteins,VLDL3 Lipoproteins,Very Low Density Lipoproteins
D008251 Macaca A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of 16 species inhabiting forests of Africa, Asia, and the islands of Borneo, Philippines, and Celebes. Ape, Barbary,Ape, Black,Ape, Celebes,Barbary Ape,Black Ape,Celebes Ape,Macaque,Apes, Barbary,Apes, Black,Apes, Celebes,Barbary Apes,Black Apes,Celebes Apes,Macacas,Macaques
D008297 Male Males
D002791 Cholesterol, Dietary Cholesterol present in food, especially in animal products. Dietary Cholesterol
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D006937 Hypercholesterolemia A condition with abnormally high levels of CHOLESTEROL in the blood. It is defined as a cholesterol value exceeding the 95th percentile for the population. Hypercholesteremia,Elevated Cholesterol,High Cholesterol Levels,Cholesterol Level, High,Cholesterol Levels, High,Cholesterol, Elevated,Cholesterols, Elevated,Elevated Cholesterols,High Cholesterol Level,Hypercholesteremias,Hypercholesterolemias,Level, High Cholesterol,Levels, High Cholesterol
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R S Kushwaha, and W R Hazzard
April 1975, Perceptual and motor skills,
R S Kushwaha, and W R Hazzard
January 2016, Comparative medicine,
R S Kushwaha, and W R Hazzard
January 1996, American journal of primatology,
Copied contents to your clipboard!