Absence of potassium conductance in central myelinated axons. 1980

J D Kocsis, and S G Waxman

Two voltage-dependent changes in ionic permeability are responsible for the action potential in squid giant axon. The depolarization phase of the action potential is due to an initial increase in sodium ion permeability, and repolarization is primarily the result of a later increase in potassium permeability. However, voltage-clamp experiments on mammalian peripheral nodes of Ranvier indicate that potassium conductances (gk) may be minimal or lacking for intact mammalian peripheral myelinated axons. Repolarization for these fibres has been explained in terms of a rapid sodium inactivation and large leakage current. When the myelin around these fibres is acutely disrupted, an immediate and prominent gk appears. Following demyelination, gk blocking agents have been shown to reduce late outward currents that are not present in normal myelinated fibres. This suggests that K+ channels are present in the axonal membrane under the myelin but are 'masked' in normal peripheral myelinated axons. Previous studies have not investigated the presence or role of K+ channels in central myelinated axons. We here establish that gk is not detectable in mammalian dorsal column axons.

UI MeSH Term Description Entries
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000631 Aminopyridines Pyridines substituted in any position with an amino group. May be hydrogenated but must retain at least one double bond. Aminopyridine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013757 Tetraethylammonium Compounds Quaternary ammonium compounds that consist of an ammonium cation where the central nitrogen atom is bonded to four ethyl groups. Tetramon,Tetrylammonium,Compounds, Tetraethylammonium
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

J D Kocsis, and S G Waxman
December 1993, The Journal of physiology,
J D Kocsis, and S G Waxman
May 1981, Science (New York, N.Y.),
J D Kocsis, and S G Waxman
April 1982, Cell biology international reports,
J D Kocsis, and S G Waxman
January 1979, Bulletin of mathematical biology,
J D Kocsis, and S G Waxman
July 1975, Pflugers Archiv : European journal of physiology,
J D Kocsis, and S G Waxman
January 1989, Pflugers Archiv : European journal of physiology,
J D Kocsis, and S G Waxman
July 2001, Cell and tissue research,
J D Kocsis, and S G Waxman
September 1995, Neuroscience,
Copied contents to your clipboard!