Failure of beta-endorphin to stimulate prolactin release in the pituitary stalk-sectioned monkey. 1980

S L Wardlaw, and W B Wehrenberg, and M Ferin, and A G Frantz

To study the locus at which opioids act to release PRL in vivo, beta-endorphin (beta-EP) was injected into intact and pituitary stalk-sectioned monkeys. In each of five intact monkeys, serum PRL rose to peak concentrations of 200-300% of baseline 20 min after injection. In contrast, beta-EP failed to cause any PRL increase in four stalk-sectioned animals. Beta-EP also failed to stimulate PRL in two stalk-sectioned monkeys receiving estrogen replacement, indicating that estrogen deficiency was not the cause of their failure to respond. To test possible antagonism of dopamine by beta-EP directly at the pituitary, L-dopa was given to six stalk-sectioned monkeys with and without beta-EP pretreatment. No alteration of the PRL suppression by L-dopa was observed Disappearance of injected beta-EP from plasma was studied in four intact monkeys. Initial and terminal half-lives ranged from 2.3-4.0 min and from 16.0-30.2 min, respectively; MCRs ranged from 70-170 ml/min. We conclude that beta-EP does not stimulate PRL secretion either directly or by interacting with dopamine at the pituitary level. These results support a hypothalamic rather than a direct pituitary site of action for opioid-stimulated PRL release.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007980 Levodopa The naturally occurring form of DIHYDROXYPHENYLALANINE and the immediate precursor of DOPAMINE. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to DOPAMINE. It is used for the treatment of PARKINSONIAN DISORDERS and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. L-Dopa,3-Hydroxy-L-tyrosine,Dopaflex,Dopar,L-3,4-Dihydroxyphenylalanine,Larodopa,Levopa,3 Hydroxy L tyrosine,L 3,4 Dihydroxyphenylalanine,L Dopa
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008254 Macaca nemestrina A species of the genus MACACA which inhabits Malaya, Sumatra, and Borneo. It is one of the most arboreal species of Macaca. The tail is short and untwisted. M. leonina,Macaca nemestrina leonina,Macaca nemestrina pagensis,Macaca nemestrina siberu,Macaca siberu,Monkey, Pig-Tailed,Pagai Macaque,Pig-Tail Macaque,Pig-Tailed Macaque,Pig-Tailed Monkey,M. pagensis,Macaca pagensis,Monkey, Pigtail,Monkey, Pigtailed,Pigtail Macaque,Macaque, Pagai,Macaque, Pig-Tail,Macaque, Pig-Tailed,Macaque, Pigtail,Monkey, Pig Tailed,Pagai Macaques,Pig Tail Macaque,Pig Tailed Macaque,Pig Tailed Monkey,Pig-Tail Macaques,Pig-Tailed Macaques,Pig-Tailed Monkeys,Pigtail Macaques,Pigtail Monkey,Pigtail Monkeys,Pigtailed Monkey,Pigtailed Monkeys
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D004723 Endorphins One of the three major groups of endogenous opioid peptides. They are large peptides derived from the PRO-OPIOMELANOCORTIN precursor. The known members of this group are alpha-, beta-, and gamma-endorphin. The term endorphin is also sometimes used to refer to all opioid peptides, but the narrower sense is used here; OPIOID PEPTIDES is used for the broader group. Endorphin
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S L Wardlaw, and W B Wehrenberg, and M Ferin, and A G Frantz
September 1976, The Journal of clinical endocrinology and metabolism,
S L Wardlaw, and W B Wehrenberg, and M Ferin, and A G Frantz
March 1980, The Journal of endocrinology,
S L Wardlaw, and W B Wehrenberg, and M Ferin, and A G Frantz
March 1979, Horumon to rinsho. Clinical endocrinology,
S L Wardlaw, and W B Wehrenberg, and M Ferin, and A G Frantz
August 1981, Endocrinologia japonica,
S L Wardlaw, and W B Wehrenberg, and M Ferin, and A G Frantz
September 1951, Endocrinology,
S L Wardlaw, and W B Wehrenberg, and M Ferin, and A G Frantz
December 1980, Endocrinology,
S L Wardlaw, and W B Wehrenberg, and M Ferin, and A G Frantz
January 1986, NIDA research monograph,
S L Wardlaw, and W B Wehrenberg, and M Ferin, and A G Frantz
November 1986, International journal of peptide and protein research,
S L Wardlaw, and W B Wehrenberg, and M Ferin, and A G Frantz
June 1978, Neuroscience letters,
Copied contents to your clipboard!