Renal vascular resistance and reactivity in the neurogenic hypertensive rat. 1980

G D Fink, and W J Bryan

Increased sympathetic nervous system activity in the kidney has been postulated as a possible etiologic factor in some forms of hypertension. The present investigation sought to document the possibility of a chronic increase in neurogenic renal vasoconstriction in an experimental model in which increased nervous activity would be expected--neurogenic hypertension resulting from partial baroreceptor deafferentation. In anesthetized rats with chronic neurogenic hypertension, renal vascular resistance was significantly higher than in sham-operated rats. After acute renal denervation, there was no statistically significant difference in renal vascular resistance between the two groups. Thus, a chronic increase in neurogenic renal vascular resistance was apparent in the hypertensive rats. Since renal vascular responses to direct renal nerve activation, norepinephrine, and other exogenous vasoactive hormones were not altered in the hypertensive rats, the increased neurogenic vasoconstriction was probably the result of increased renal nerve discharge. Unaltered neurotransmission and reactivity further indicated a failure of the renal nerves or blood vessels to "adapt" to increased nervous activity. These results support previous suggestions that increased renal sympathetic nerve activity could result in sustained neurogenic renal vasoconstriction and thereby contribute to the development of hypertension.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011311 Pressoreceptors Receptors in the vascular system, particularly the aorta and carotid sinus, which are sensitive to stretch of the vessel walls. Baroreceptors,Receptors, Stretch, Arterial,Receptors, Stretch, Vascular,Stretch Receptors, Arterial,Stretch Receptors, Vascular,Arterial Stretch Receptor,Arterial Stretch Receptors,Baroreceptor,Pressoreceptor,Receptor, Arterial Stretch,Receptor, Vascular Stretch,Receptors, Arterial Stretch,Receptors, Vascular Stretch,Stretch Receptor, Arterial,Stretch Receptor, Vascular,Vascular Stretch Receptor,Vascular Stretch Receptors
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001011 Aorta The main trunk of the systemic arteries. Aortas

Related Publications

G D Fink, and W J Bryan
August 1979, The American journal of physiology,
G D Fink, and W J Bryan
January 1980, Hypertension (Dallas, Tex. : 1979),
G D Fink, and W J Bryan
June 1982, The American journal of physiology,
G D Fink, and W J Bryan
January 1974, Blood vessels,
G D Fink, and W J Bryan
January 1979, Blood vessels,
G D Fink, and W J Bryan
June 1982, Pflugers Archiv : European journal of physiology,
G D Fink, and W J Bryan
January 1980, Hypertension (Dallas, Tex. : 1979),
Copied contents to your clipboard!