Studies on dissociation and reconstitution of nuclear 30-S ribonucleoprotein particles containing pre-mRNA. 1980

V V Kulguskin, and A A Krichevskaya, and E M Lukanidin, and G P Georgiev

Treatment of nuclear 30-S ribonucleoprotein (RNP) particles containing pre-mRNA (precursor of mRNA) with 2 M NaCl leads to dissociation of RNA and protein. The protein component is present either as an aggregate with a sedimentation coefficient close to 30 S (a free informofer) or as a slowly sedimenting material (monomers or oligomers of informatin). Most of the informofers and slowly sedimenting material are in the equilibrium state. Iodination or aging of the 30-S particles stabilizes informofers. Lowering of NaCl concentration in the mixture of RNA with informofers or informatin subunits leads to reconstitution of RNP particles. In both cases, the particles formed have a sedimentation coefficient of about 30 S and a buoyant density equal to 1.4-1.41 g/cm3 but their response to pancreatic RNAase (EC 3.1.27.5) and high salt treatment is very different. Both the particles reconstituted from RNA and informofers and the original particles are very sensitive to pancreatic RNAase and after high salt treatment free informofers are formed. In contrast, the RNA of the particles reconstituted from slowly sedimenting material is much more protected against pancreatic RNAase action. These particles are also rather stable to high salt treatment. Thus, only if a protein in the form of an informofer aggregate is used, faithful reconstitution takes place. The data obtained are discussed in terms of the structure of the nuclear ribonucleoprotein particles containing precursor of messenger RNA.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009694 Nucleic Acid Precursors Use for nucleic acid precursors in general or for which there is no specific heading. Acid Precursors, Nucleic,Precursors, Nucleic Acid
D009698 Nucleoproteins Proteins conjugated with nucleic acids. Nucleoprotein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012260 Ribonucleases Enzymes that catalyze the hydrolysis of ester bonds within RNA. EC 3.1.-. Nucleases, RNA,RNase,Acid Ribonuclease,Alkaline Ribonuclease,Ribonuclease,RNA Nucleases,Ribonuclease, Acid,Ribonuclease, Alkaline
D012261 Ribonucleoproteins Complexes of RNA-binding proteins with ribonucleic acids (RNA). Ribonucleoprotein
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

V V Kulguskin, and A A Krichevskaya, and E M Lukanidin, and G P Georgiev
January 1973, Acta endocrinologica. Supplementum,
V V Kulguskin, and A A Krichevskaya, and E M Lukanidin, and G P Georgiev
January 1974, Acta biochimica et biophysica; Academiae Scientiarum Hungaricae,
V V Kulguskin, and A A Krichevskaya, and E M Lukanidin, and G P Georgiev
January 1977, Molekuliarnaia biologiia,
V V Kulguskin, and A A Krichevskaya, and E M Lukanidin, and G P Georgiev
March 1975, Molecular biology reports,
V V Kulguskin, and A A Krichevskaya, and E M Lukanidin, and G P Georgiev
July 1967, Journal of molecular biology,
V V Kulguskin, and A A Krichevskaya, and E M Lukanidin, and G P Georgiev
January 1987, Nature,
V V Kulguskin, and A A Krichevskaya, and E M Lukanidin, and G P Georgiev
March 1975, Molecular biology reports,
V V Kulguskin, and A A Krichevskaya, and E M Lukanidin, and G P Georgiev
December 1973, Molecular biology reports,
V V Kulguskin, and A A Krichevskaya, and E M Lukanidin, and G P Georgiev
September 1979, European journal of biochemistry,
V V Kulguskin, and A A Krichevskaya, and E M Lukanidin, and G P Georgiev
October 1971, Biochimica et biophysica acta,
Copied contents to your clipboard!