Absence of satellite DNA synthesis during meiotic prophase in mouse and human spermatocytes. 1978

Y Hotta, and H Stern

Mouse spermatocytes were labelled in situ with 3H-thymidine at successive stages of meiosis. Isolated mouse as well as human spermatocytes were similarly labelled under in vitro conditions. DNA synthesis was followed either by tracking radioactivities in Cs2SO4 gradients or by measuring reassociation kinetics. Mouse satellite DNA and the 3 satellites of human DNA are labelled during S-phase but not during pachytene. In the mouse genome, there is a preferential labelling of regions containing foldbacks (human spermatocytes were not analyzed in this respect). The absence of detectable pachytene synthesis in satellite DNA is consistent with genetic evidence on the absence of crossing-over in constitutive heterochromatin.

UI MeSH Term Description Entries
D008297 Male Males
D008540 Meiosis A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M
D011418 Prophase The first phase of cell nucleus division, in which the CHROMOSOMES become visible, the CELL NUCLEUS starts to lose its identity, the SPINDLE APPARATUS appears, and the CENTRIOLES migrate toward opposite poles. Prophases
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004276 DNA, Satellite Highly repetitive DNA sequences found in HETEROCHROMATIN, mainly near centromeres. They are composed of simple sequences (very short) (see MINISATELLITE REPEATS) repeated in tandem many times to form large blocks of sequence. Additionally, following the accumulation of mutations, these blocks of repeats have been repeated in tandem themselves. The degree of repetition is on the order of 1000 to 10 million at each locus. Loci are few, usually one or two per chromosome. They were called satellites since in density gradients, they often sediment as distinct, satellite bands separate from the bulk of genomic DNA owing to a distinct BASE COMPOSITION. Satellite DNA,Satellite I DNA,DNA, Satellite I,DNAs, Satellite,DNAs, Satellite I,I DNA, Satellite,I DNAs, Satellite,Satellite DNAs,Satellite I DNAs
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Y Hotta, and H Stern
January 2008, Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology,
Y Hotta, and H Stern
December 1974, The Journal of cell biology,
Y Hotta, and H Stern
August 1968, Nature,
Y Hotta, and H Stern
January 1976, Hereditas,
Copied contents to your clipboard!