The red nucleus of the monkey. Topographic localization of somatosensory input and motor output. 1980

K D Larsen, and H Yumiya

The topographic organization of somatosensory input to the primate red nucleus was investigated by studying receptive fields of rubral neurons, and that of the motor output by delivering trains of microstimulating pulses to evoke movements. A receptive field was identified in 191 of 208 rubral neurons. Most neurons (172) responded to passive movement of one or two joints including digits but some (26) had a cutaneous input. Neurons in both the parvocellular (RNpc) and magnocellular (RNmc) divisions of the nucleus had receptive fields. Neurons which responded to stimulation of the forelimb were located in the dorsomedial part of the nucleus. Those responsive to stimulation of the hindlimb were in the ventrolateral part. Thin regions on the dorsal and ventrolateral borders of the nuclei, respectively, contained neurons responsive to face and tail stimulation. Within the regions representing each limb, neurons receiving an input from the extremity (hand or foot) formed a core surrounded by neurons with an input from more proximal segments. This core extended uninterrupted throughout the RNpc and RNmc. Movements of individual limb segments including digits were readily evoked by microstimulating in the RNmc with thresholds as low as 3 microA. In most cases, movements were evoked in the direction opposite to the passive movement which drove the neurons at the stimulating site, although fibers of passage limited the analysis of the sensory input-motor output organization with stimulation. We conclude that there is topographic localization of somatosensory input and motor output in the macaque red nucleus. Furthermore, the red nucleus of monkeys contributes to the control of independent movements of limb segments including digits, although the number of axons it sends to the spinal cord is less than 1% of the number of corticospinal axons.

UI MeSH Term Description Entries
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D012012 Red Nucleus A pinkish-yellow portion of the midbrain situated in the rostral mesencephalic tegmentum. It receives a large projection from the contralateral half of the CEREBELLUM via the superior cerebellar peduncle and a projection from the ipsilateral MOTOR CORTEX. Nucleus Ruber,Nucleus, Red
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005552 Forelimb A front limb of a quadruped. (The Random House College Dictionary, 1980) Forelimbs

Related Publications

K D Larsen, and H Yumiya
November 1975, Brain research,
K D Larsen, and H Yumiya
June 1976, The Journal of physiology,
K D Larsen, and H Yumiya
February 1989, Journal of neurophysiology,
K D Larsen, and H Yumiya
January 1972, Experimental brain research,
K D Larsen, and H Yumiya
May 2004, Archives italiennes de biologie,
K D Larsen, and H Yumiya
January 1987, Ciba Foundation symposium,
K D Larsen, and H Yumiya
January 1983, Advances in neurology,
Copied contents to your clipboard!