Eye movement related activity and morphology of second order vestibular neurons terminating in the cat abducens nucleus. 1980

R A McCrea, and K Yoshida, and A Berthoz, and R Baker

Intracellular records were obtained from axons of second order vestibular neurons in, and around, the left abducens nucleus in alert cats implanted with stimulating electrodes on both vestibular nerves and the left VIth nerve. Twelve secondary vestibular neurons were identified by their increase in firing rate with horizontal head rotation to the left and/or increasing eye position to the right. Following HRP injection, somatic location, axonal trajectory and termination sites were determined. Each of the above cells collateralized extensively in the abducens nucleus in a fashion consistent with their being either inhibitory (n = 7; left) or excitatory (n = 6; right) vestibular neurons in the disynaptic horizontal vestibulo-ocular reflex pathway. These vestibular neurons also arborized extensively in other posterior brainstem eye-movement related areas as well as sending an axon to the spinal cord.

UI MeSH Term Description Entries
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005133 Eye Movements Voluntary or reflex-controlled movements of the eye. Eye Movement,Movement, Eye,Movements, Eye
D000010 Abducens Nerve The 6th cranial nerve which originates in the ABDUCENS NUCLEUS of the PONS and sends motor fibers to the lateral rectus muscles of the EYE. Damage to the nerve or its nucleus disrupts horizontal eye movement control. Cranial Nerve VI,Sixth Cranial Nerve,Abducent Nerve,Nerve VI,Nervus Abducens,Abducen, Nervus,Abducens, Nervus,Abducent Nerves,Cranial Nerve VIs,Cranial Nerve, Sixth,Nerve VI, Cranial,Nerve VIs,Nerve VIs, Cranial,Nerve, Abducens,Nerve, Abducent,Nerve, Sixth Cranial,Nerves, Sixth Cranial,Nervus Abducen,Sixth Cranial Nerves
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R A McCrea, and K Yoshida, and A Berthoz, and R Baker
January 1981, Annals of the New York Academy of Sciences,
R A McCrea, and K Yoshida, and A Berthoz, and R Baker
January 1986, Experimental brain research,
R A McCrea, and K Yoshida, and A Berthoz, and R Baker
January 1988, Experimental brain research,
R A McCrea, and K Yoshida, and A Berthoz, and R Baker
December 1992, Neuroscience research,
R A McCrea, and K Yoshida, and A Berthoz, and R Baker
October 1988, The Journal of comparative neurology,
R A McCrea, and K Yoshida, and A Berthoz, and R Baker
December 1975, Brain research,
R A McCrea, and K Yoshida, and A Berthoz, and R Baker
October 2016, Journal of neurophysiology,
R A McCrea, and K Yoshida, and A Berthoz, and R Baker
June 2014, Journal of neurophysiology,
R A McCrea, and K Yoshida, and A Berthoz, and R Baker
October 1990, Neuroscience letters,
R A McCrea, and K Yoshida, and A Berthoz, and R Baker
April 1978, Brain research,
Copied contents to your clipboard!