Response of alveolar epithelial solute permeability to changes in lung inflation. 1980

E A Egan

The relation between the solute permeability of th alveolar epithelium, characterized as a pore radius, and lung inflation was studied in anesthetized dogs. Pore radius was calculated from measurements of the rate of efflux of several radiolabeled solutes of known molecular size from alveolar saline. Individual animals were studied at two or more separate inflation volumes. The pore radius during the first volume studied averaged 20 A in high-volume animals (mean inflation 82% of capacity) and 15 A at lower volume (mean inflation, 47% of capacity). The difference was significantly P < 0.05. Lungs inflated to total capacity showed free solute movement across the lung epithelium. Increasing inflation volume in an animal always produced a larger pore radius. Decreasing the inflation volume did not produce a smaller pore radius; it remained the same or became larger. Volume induced increases in lung epithelial solute permeability do not reverse immediately at lower volumes, suggesting this phenomenon represents lung injury.

UI MeSH Term Description Entries
D008176 Lung Volume Measurements Measurement of the amount of air that the lungs may contain at various points in the respiratory cycle. Lung Capacities,Lung Volumes,Capacity, Lung,Lung Capacity,Lung Volume,Lung Volume Measurement,Measurement, Lung Volume,Volume, Lung
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D011650 Pulmonary Alveoli Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place. Alveoli, Pulmonary,Alveolus, Pulmonary,Pulmonary Alveolus
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

E A Egan
June 1982, Journal of applied physiology: respiratory, environmental and exercise physiology,
E A Egan
May 1983, The American review of respiratory disease,
E A Egan
October 1983, Journal of applied physiology: respiratory, environmental and exercise physiology,
E A Egan
August 2001, Journal of applied physiology (Bethesda, Md. : 1985),
E A Egan
April 2006, American journal of physiology. Cell physiology,
E A Egan
April 1980, Environmental health perspectives,
E A Egan
December 1991, Journal of applied physiology (Bethesda, Md. : 1985),
E A Egan
January 1980, Lancet (London, England),
Copied contents to your clipboard!