Development and degeneration of retina in rds mutant mice: light microscopy. 1980

S Sanyal, and A De Ruiter, and R K Hawkins

Changes during the development and degeneration of the retina in 020/A mice, which are homozygous for the newly reported rds (retinal degeneration slow), gene were studied by histological and enzyme-histochemical methods with Balb/c mice carrying the normal allele as control. During normal development the total thickness of the retina grows from the time of birth till the age of 21 days and thereafter gradually diminishes, while the thicknesses of the component layers show a characteristic and differential change in course of their histogenesis. In the normal retina the perikarya of the cones are more frequent in the central than in the peripheral areas. The cone frequency in the central retina, but not in the periphery, increases with age and implies selective loss of rod cells in older animals. In the homozygous rds mice, the receptor layer remains rudimentary, but the other retinal layers show a normal trend of growth during the first 2 weeks after birth. Thereafter th morphological layers containing visual cell structures--the receptor, the outer nuclear, and the outer plexiform layers--begin to reduce. The loss of visual cells is readily marked by the reduction of the outer nuclear layer and is first evident at 2 weeks after birth. Degeneration is more rapid up to the age of 2-3 months, when the outer nuclear layer is reduced to half of its original thickness; thereafter degeneration progresses more slowly. The receptor and the outer plexiform layers are also simultaneously reduced. At 9 months, the peripheral parts of the retina, and at 12 months, the entire retina is completely lacking in visual cells. In the central retina of the mutant, rod and cone cell populations are equally affected up to the age of 6 months, as their relative frequency remains similar to the normal. In the peripheral retina, where cell loss is more pronounced, and in the central retina at 9 months an increase in relative frequency of cones is recorded and indicate increased susceptibility of the rods to later degenerative changes. The inner parts of the retina, including inner nuclear, inner plexiform, and ganglion cell layers, remain morphologically unaffected until irregular vascularization follows total loss of visual cells. The pigment epithelium is also affected at this late stage and appears depleted and patchy. In the normal retina, macrophages which are positively stained for the enzyme N-acetyl-beta-glucosaminidase appear in the inner layers with the growth of the retinal vasculature. In the mutant, increased frequency and stainability of the macrophages are discernible in the inner retina at 11 days. The macrophages migrate outwards and are observed in the outer nuclear layer and in the optic ventricle during the period of degeneration. These findings are compared with the observations in the other retinal degeneration mutants in rodents, and in retinitis pigmentosa in humans. The suitability of the rds mice as an animal model system for the human disease is emphasized.

UI MeSH Term Description Entries
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D012162 Retinal Degeneration A retrogressive pathological change in the retina, focal or generalized, caused by genetic defects, inflammation, trauma, vascular disease, or aging. Degeneration affecting predominantly the macula lutea of the retina is MACULAR DEGENERATION. (Newell, Ophthalmology: Principles and Concepts, 7th ed, p304) Degeneration, Retinal,Degenerations, Retinal,Retinal Degenerations
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D005808 Genes, Recessive Genes that influence the PHENOTYPE only in the homozygous state. Conditions, Recessive Genetic,Genetic Conditions, Recessive,Recessive Genetic Conditions,Condition, Recessive Genetic,Gene, Recessive,Genetic Condition, Recessive,Recessive Gene,Recessive Genes,Recessive Genetic Condition
D006720 Homozygote An individual in which both alleles at a given locus are identical. Homozygotes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

S Sanyal, and A De Ruiter, and R K Hawkins
March 1984, The Journal of comparative neurology,
S Sanyal, and A De Ruiter, and R K Hawkins
July 1984, Neuroscience letters,
S Sanyal, and A De Ruiter, and R K Hawkins
December 1985, Experimental eye research,
S Sanyal, and A De Ruiter, and R K Hawkins
September 1990, Current eye research,
S Sanyal, and A De Ruiter, and R K Hawkins
November 1986, Journal of embryology and experimental morphology,
Copied contents to your clipboard!