Quantitative variation of "Mus musculus-like" constitutive heterochromatin and satellite DNA-sequences in the genus Mus. 1980

S Sen, and T Sharma

The extent of conservation of constitutive heterochromatin in three species of Mus viz. M. musculus, M. booduga and M. dunni, with shared cytological properties and homologous DNA sequences has been studied. The cytological properties were investigated by doing fluorescence staining and condensation inhibition of their chromosomes with Hoechst 33258. Both the parameters indicate the occurrence of a reduced quantum of "M. musculus like heterochromatin" at specific sites in the other two genomes. In situ hybridization of the nick translated 3H-labelled M. musculus satellite DNA with M. booduga and M. dunni chromosomes, also corroborates our Hoechst 33258 findings and comparable variation in the amount and site of occurrence of sequences homologous to M. musculus satellite DNA in these species are noticed. The study thus provides a good example of a gradual quantitative variation of a particular type of heterochromatin and in turn of the repetitive DNA constituting it in different related species. Further since the heterochromatin in M. booduga and M. dunni is expected to contain different repetitive DNA sequences in addition to those homologous to M. musculus satellite DNA, it is proposed that a change in the balance between two or more repetitive sequences in heterochromatin may be more crucial in its evolutionary consequences rather than a mere increase or decrease of a homogeneous repetitive sequence.

UI MeSH Term Description Entries
D007621 Karyotyping Mapping of the KARYOTYPE of a cell. Karyotype Analysis Methods,Analysis Method, Karyotype,Analysis Methods, Karyotype,Karyotype Analysis Method,Karyotypings,Method, Karyotype Analysis,Methods, Karyotype Analysis
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002875 Chromosomes In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromosome
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004276 DNA, Satellite Highly repetitive DNA sequences found in HETEROCHROMATIN, mainly near centromeres. They are composed of simple sequences (very short) (see MINISATELLITE REPEATS) repeated in tandem many times to form large blocks of sequence. Additionally, following the accumulation of mutations, these blocks of repeats have been repeated in tandem themselves. The degree of repetition is on the order of 1000 to 10 million at each locus. Loci are few, usually one or two per chromosome. They were called satellites since in density gradients, they often sediment as distinct, satellite bands separate from the bulk of genomic DNA owing to a distinct BASE COMPOSITION. Satellite DNA,Satellite I DNA,DNA, Satellite I,DNAs, Satellite,DNAs, Satellite I,I DNA, Satellite,I DNAs, Satellite,Satellite DNAs,Satellite I DNAs
D006570 Heterochromatin The portion of chromosome material that remains condensed and is transcriptionally inactive during INTERPHASE. Heterochromatins
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D014644 Genetic Variation Genotypic differences observed among individuals in a population. Genetic Diversity,Variation, Genetic,Diversity, Genetic,Diversities, Genetic,Genetic Diversities,Genetic Variations,Variations, Genetic

Related Publications

S Sen, and T Sharma
January 1970, Experimental cell research,
S Sen, and T Sharma
April 1970, Science (New York, N.Y.),
S Sen, and T Sharma
January 2009, Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology,
Copied contents to your clipboard!