Kinetics of carbamylcholine binding to membrane-bound acetylcholine receptor monitored by fluorescence changes of a covalently bound probe. 1980

S M Dunn, and S G Blanchard, and M A Raftery

The fluorescent probe 5-(iodoacetamido)salicylic acid has been used to alkylate acetylcholine receptor enriched membrane fragments from Torpedo californica following their reduction with low concentrations of dithiothreitol. This modification did not affect the equilibrium binding of carbamylcholine to the receptor. The fluorescence of bound 5-(iodoacetamido)salicyclic acid was enhanced when the labeled membrane fragments were mixed with carbamylcholine. This increase in fluorescence was abolished by preincubation of the membrane fragments with excess alpha-bungarotoxin and was therefore specific for the acetylcholine receptor. Estimates of dissociation constants obtained from centrifugation experiments with radioactive ligand and from fluorescence titration data were in good agreement, showing that the observed fluorescence enhancement was an accurate reflection of receptor-carbamylcholine complex formation. The kinetics of carbamylcholine binding to labeled membrane fragments have been investigated over a wide range of ligand concentrations by using stopped-flow fluorescence techniques. The kinetic signal was complicated, and four distinct exponential phases were observed. A kinetic mechanism has been proposed to account for this behavior.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004229 Dithiothreitol A reagent commonly used in biochemical studies as a protective agent to prevent the oxidation of SH (thiol) groups and for reducing disulphides to dithiols. Cleland Reagent,Cleland's Reagent,Sputolysin,Clelands Reagent,Reagent, Cleland,Reagent, Cleland's
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.

Related Publications

S M Dunn, and S G Blanchard, and M A Raftery
April 1978, Biochemical and biophysical research communications,
S M Dunn, and S G Blanchard, and M A Raftery
September 1976, Nature,
S M Dunn, and S G Blanchard, and M A Raftery
September 1982, European journal of biochemistry,
S M Dunn, and S G Blanchard, and M A Raftery
January 1991, Biomedica biochimica acta,
S M Dunn, and S G Blanchard, and M A Raftery
September 1976, Biochemical and biophysical research communications,
S M Dunn, and S G Blanchard, and M A Raftery
December 1976, Biochemical and biophysical research communications,
S M Dunn, and S G Blanchard, and M A Raftery
November 1986, The Journal of biological chemistry,
S M Dunn, and S G Blanchard, and M A Raftery
September 1988, The Journal of cell biology,
Copied contents to your clipboard!