Glyoxylate bypass enzymes in Yersinia species and multiple forms of isocitrate lyase in Yersinia pestis. 1981

S Hillier, and W T Charnetzky

Isocitrate lyase and malate synthase, the two unique enzymes of the glyoxylate cycle, were detected in crude extracts of Yersinia pestis, Y. pseudotuberculosis, and Y. enterocolitica. Y. pestis, unlike Escherichia coli and the other yersiniae tested, yielded two forms of isocitrate lyase during growth on acetate. These forms differed in electrophoretic mobility and temperature optima. One form (A) was present during growth on acetate, but was absent during growth on alternate carbon sources such as glucose. The second form (B) was not constitutive, but was found during growth on acetate, glucose, xylose, or other complex carbon sources. Itaconate, a succinate analog which inhibited both forms of isocitrate lyase in crude extracts, did not affect the growth of Y. pestis under conditions where little isocitrate lyase activity was detected. This inhibitor, however, retarded the growth of Y. pestis under conditions where acetate was provided as the primary carbon and energy source as well as under all conditions in which either form of isocitrate lyase was evident. This suggests that the B form may play an important role in the growth of this bacterium under conditions where a requirement for the classical anaplerotic sequence involving this enzyme is not apparent.

UI MeSH Term Description Entries
D007522 Isocitrate Lyase A key enzyme in the glyoxylate cycle. It catalyzes the conversion of isocitrate to succinate and glyoxylate. EC 4.1.3.1. Isocitrase,Isocitratase,Lyase, Isocitrate
D007652 Oxo-Acid-Lyases Enzymes that catalyze the cleavage of a carbon-carbon bond of a 3-hydroxy acid. (Dorland, 28th ed) EC 4.1.3. Ketoacid-Lyases,Ketoacid Lyases,Oxo Acid Lyases
D008292 Malate Synthase An important enzyme in the glyoxylic acid cycle which reversibly catalyzes the synthesis of L-malate from acetyl-CoA and glyoxylate. This enzyme was formerly listed as EC 4.1.3.2. Glyoxylate Transacetylase,Malate Condensing Enzyme,Malate Synthetase,Condensing Enzyme, Malate,Enzyme, Malate Condensing,Synthase, Malate,Synthetase, Malate,Transacetylase, Glyoxylate
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D013386 Succinates Derivatives of SUCCINIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a 1,4-carboxy terminated aliphatic structure. Succinic Acids,Acids, Succinic
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D015007 Yersinia A genus of gram-negative, facultatively anaerobic rod- to coccobacillus-shaped bacteria that occurs in a broad spectrum of habitats.
D015010 Yersinia pestis The etiologic agent of PLAGUE in man, rats, ground squirrels, and other rodents. Bacillus pestis,Bacterium pestis,Pasteurella pestis,Pestisella pestis,Yersinia pseudotuberculosis subsp. pestis

Related Publications

S Hillier, and W T Charnetzky
August 1983, Archives of biochemistry and biophysics,
S Hillier, and W T Charnetzky
May 1967, Journal of bacteriology,
S Hillier, and W T Charnetzky
October 1979, Archives of biochemistry and biophysics,
S Hillier, and W T Charnetzky
February 1989, Zhurnal mikrobiologii, epidemiologii i immunobiologii,
S Hillier, and W T Charnetzky
July 2000, Trends in microbiology,
S Hillier, and W T Charnetzky
July 1963, Biochimica et biophysica acta,
Copied contents to your clipboard!