Effect of Wallerian degeneration on histamine concentration of the peripheral nerve. 1981

S M MacDonald, and M Mezei, and C Mezei

One sciatic nerve of a White Leghorn hen was severed and the distal portion was allowed to undergo Wallerian degeneration. The change in histamine and DNA concentration and mast cell number was measured at different times following nerve sectioning in the proximal regenerating, distal degenerating, and intact, contralateral nerves. The experimental results revealed a significant accumulation of histamine in the proximal desheathed segment and in the contralateral "functional nerve," whereas the biogenic amine in the distal desheathed nerve significantly decreased. The pattern of change of histamine in the distal and proximal nerve sheaths was different: it dropped at 2 h and then rose in the later stages of Wallerian degeneration. In the distal desheathed nerves and in both the proximal and distal nerve sheaths DNA increased significantly by 14 days. The number of mast cells appeared to be highest in the 14-day distal nerve and in the 7-day proximal nerve sheaths. These results support a dual localization of histamine in the peripheral nerve, and are consistent with the interpretation that the amine has either some role in neurotransmission or in the process of growth and regeneration.

UI MeSH Term Description Entries
D008407 Mast Cells Granulated cells that are found in almost all tissues, most abundantly in the skin and the gastrointestinal tract. Like the BASOPHILS, mast cells contain large amounts of HISTAMINE and HEPARIN. Unlike basophils, mast cells normally remain in the tissues and do not circulate in the blood. Mast cells, derived from the bone marrow stem cells, are regulated by the STEM CELL FACTOR. Basophils, Tissue,Basophil, Tissue,Cell, Mast,Cells, Mast,Mast Cell,Tissue Basophil,Tissue Basophils
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D010525 Peripheral Nerves The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium. Endoneurium,Epineurium,Perineurium,Endoneuriums,Epineuriums,Nerve, Peripheral,Nerves, Peripheral,Perineuriums,Peripheral Nerve
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005260 Female Females
D006632 Histamine An amine derived by enzymatic decarboxylation of HISTIDINE. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter. Ceplene,Histamine Dihydrochloride,Histamine Hydrochloride,Peremin

Related Publications

S M MacDonald, and M Mezei, and C Mezei
September 1953, Revue canadienne de biologie,
S M MacDonald, and M Mezei, and C Mezei
June 1967, Archives of neurology,
S M MacDonald, and M Mezei, and C Mezei
August 1992, Neurologic clinics,
S M MacDonald, and M Mezei, and C Mezei
March 1996, Bailliere's clinical neurology,
S M MacDonald, and M Mezei, and C Mezei
July 1949, Nature,
S M MacDonald, and M Mezei, and C Mezei
August 1957, Experimental cell research,
S M MacDonald, and M Mezei, and C Mezei
June 1988, Experimental neurology,
S M MacDonald, and M Mezei, and C Mezei
June 1978, Journal of neurochemistry,
S M MacDonald, and M Mezei, and C Mezei
January 1961, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
S M MacDonald, and M Mezei, and C Mezei
June 2017, Neural regeneration research,
Copied contents to your clipboard!