"Pseudochemotaxis" by micro-organisms in an attractant gradient. 1980

I R Lapidus

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D002630 Chemotactic Factors Chemical substances that attract or repel cells. The concept denotes especially those factors released as a result of tissue injury, microbial invasion, or immunologic activity, that attract LEUKOCYTES; MACROPHAGES; or other cells to the site of infection or insult. Chemoattractant,Chemotactic Factor,Chemotaxin,Chemotaxins,Cytotaxinogens,Cytotaxins,Macrophage Chemotactic Factor,Chemoattractants,Chemotactic Factors, Macrophage,Macrophage Chemotactic Factors,Chemotactic Factor, Macrophage,Factor, Chemotactic,Factor, Macrophage Chemotactic
D002633 Chemotaxis The movement of cells or organisms toward or away from a substance in response to its concentration gradient. Haptotaxis
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D056890 Eukaryota One of the three domains of life (the others being BACTERIA and ARCHAEA), also called Eukarya. These are organisms whose cells are enclosed in membranes and possess a nucleus. They comprise almost all multicellular and many unicellular organisms, and are traditionally divided into groups (sometimes called kingdoms) including ANIMALS; PLANTS; FUNGI; and various algae and other taxa that were previously part of the old kingdom Protista. Eukaryotes,Eucarya,Eukarya,Eukaryotas,Eukaryote
D018407 Bacterial Physiological Phenomena Physiological processes and properties of BACTERIA. Bacterial Physiology,Bacterial Processes,Bacterial Physiological Concepts,Bacterial Physiological Phenomenon,Bacterial Process,Physiology, Bacterial,Bacterial Physiological Concept,Concept, Bacterial Physiological,Concepts, Bacterial Physiological,Phenomena, Bacterial Physiological,Phenomenon, Bacterial Physiological,Process, Bacterial,Processes, Bacterial

Related Publications

I R Lapidus
November 1984, Journal of general microbiology,
I R Lapidus
January 1963, Nature,
I R Lapidus
January 1993, Advances in microbial physiology,
I R Lapidus
July 1956, Journal of general microbiology,
I R Lapidus
August 1957, Journal of general microbiology,
I R Lapidus
January 1984, Biotechnology & genetic engineering reviews,
I R Lapidus
March 1973, Proceedings of the Royal Society of London. Series B, Biological sciences,
I R Lapidus
January 1994, Advances in microbial physiology,
I R Lapidus
June 1947, Journal of the Chemical Society,
I R Lapidus
September 1951, Folha medica,
Copied contents to your clipboard!