Lipids of synaptic vesicles: relevance to the mechanism of membrane fusion. 1981

J W Deutsch, and R B Kelly

Synaptic vesicles from the electric organ of the marine ray Narcine brasiliensis, purified to at least 90% homogeneity, were analyzed for the lipid and fatty acid content of their membranes. The major lipids (mol %) were phosphatidylcholine (32.3%), phosphatidylethanolamine (20.5%), phosphatidylserine (6.1%), sphingomyelin (3.0%), and cholesterol (33.3%), a composition which did not differ greatly from that of the parent electric organ. While the number of double bonds per fatty acid molecule was similar for both synaptic vesicle and whole electric organ phospholipids, the vesicles were highly enriched in docosahexenoic acid (22:6). Reaction with the amine labeling reagents isethionylacetimidate and trinitrobenzenesulfonic acid indicated that 40% of the phosphatidylserine and 60% of the phosphatidylethanolamine are present on the external (cytoplasmic) surface of the synaptic vesicle. These data on a natural fusing membrane have relevance to models of membrane fusion, which have been based largely on studies of in vitro fusion using synthetic membranes.

UI MeSH Term Description Entries
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002459 Cell Fusion Fusion of somatic cells in vitro or in vivo, which results in somatic cell hybridization. Cell Fusions,Fusion, Cell,Fusions, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J W Deutsch, and R B Kelly
January 1999, Biophysical journal,
J W Deutsch, and R B Kelly
July 1997, Biochemical and biophysical research communications,
J W Deutsch, and R B Kelly
October 2001, Nature neuroscience,
J W Deutsch, and R B Kelly
January 2020, International journal of pharmaceutics,
J W Deutsch, and R B Kelly
January 2013, Neuron,
J W Deutsch, and R B Kelly
August 2006, Neurochemistry international,
J W Deutsch, and R B Kelly
February 1967, Nature,
J W Deutsch, and R B Kelly
April 1979, The Journal of membrane biology,
J W Deutsch, and R B Kelly
January 2001, World review of nutrition and dietetics,
Copied contents to your clipboard!