Paradoxical effect of Sudan III on the in vivo and in vitro genotoxicity elicited by 7,12-dimethylbenz(a)anthracene. 1995

S Hatakeyama, and Y Hayasaki, and M Masuda, and A Kazusaka, and S Fujita
Biological Research, Lab., Nisshin Flour Milling Co. Ltd., Saitama, Japan.

Effect of the induction of drug metabolizing enzymes by Sudan III on the in vivo and in vitro genotoxicity elicited by 7,12-dimethyl-benz(a)anthracene (DMBA) was investigated. A significant suppression of DMBA-induced micronucleated reticulocytes was observed in C57BL/6 mice treated with Sudan III intraperitoneally for 3 or 5 days before injection of the DMBA. However, the preincubation of DMBA with hepatic microsomes from Sudan III-treated rats caused a marked increase in the in vitro mutagenicity in the Ames assay, paradoxically. Sudan III was found to induce CYP 1A1, 7-ethoxycoumarin O-deethylase activity as well as both UDP-glucuronyl transferase and glutathione S-transferase activities. The increase of mutagenicity of DMBA observed in the Ames assay using hepatic microsomes from Sudan III-treated rats was inhibited by the addition of uridine 5'-diphosphoglucuronic acid or reduced glutathione with cytosol. Mutagenic metabolites of DMBA formed by CYP1A1 appeared to be effectively detoxified by these phase II enzymes. The results of this study suggest that Sudan III-induced prevention of in vivo mutagenesis is due to the induction of both CYP 1A1 and detoxifying phase II enzymes. The induced CYP1A1 may accelerate formation of active metabolic intermediates, but phase II enzymes are also induced and detoxify these intermediates to inactive metabolites. This would reduce residence time of the carcinogen in the body and the time of exposure to active metabolites for target organs.

UI MeSH Term Description Entries
D008297 Male Males
D008658 Inactivation, Metabolic Reduction of pharmacologic activity or toxicity of a drug or other foreign substance by a living system, usually by enzymatic action. It includes those metabolic transformations that make the substance more soluble for faster renal excretion. Detoxication, Drug, Metabolic,Drug Detoxication, Metabolic,Metabolic Detoxication, Drug,Detoxification, Drug, Metabolic,Metabolic Detoxification, Drug,Metabolic Drug Inactivation,Detoxication, Drug Metabolic,Detoxication, Metabolic Drug,Detoxification, Drug Metabolic,Drug Inactivation, Metabolic,Drug Metabolic Detoxication,Drug Metabolic Detoxification,Inactivation, Metabolic Drug,Metabolic Drug Detoxication,Metabolic Inactivation
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009152 Mutagenicity Tests Tests of chemical substances and physical agents for mutagenic potential. They include microbial, insect, mammalian cell, and whole animal tests. Genetic Toxicity Tests,Genotoxicity Tests,Mutagen Screening,Tests, Genetic Toxicity,Toxicity Tests, Genetic,Genetic Toxicity Test,Genotoxicity Test,Mutagen Screenings,Mutagenicity Test,Screening, Mutagen,Screenings, Mutagen,Test, Genotoxicity,Tests, Genotoxicity,Toxicity Test, Genetic
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme

Related Publications

S Hatakeyama, and Y Hayasaki, and M Masuda, and A Kazusaka, and S Fujita
January 1976, Voprosy onkologii,
S Hatakeyama, and Y Hayasaki, and M Masuda, and A Kazusaka, and S Fujita
January 1978, The Journal of organic chemistry,
S Hatakeyama, and Y Hayasaki, and M Masuda, and A Kazusaka, and S Fujita
September 1995, Free radical biology & medicine,
S Hatakeyama, and Y Hayasaki, and M Masuda, and A Kazusaka, and S Fujita
July 1987, Cancer letters,
S Hatakeyama, and Y Hayasaki, and M Masuda, and A Kazusaka, and S Fujita
January 1972, Comptes rendus des seances de la Societe de biologie et de ses filiales,
S Hatakeyama, and Y Hayasaki, and M Masuda, and A Kazusaka, and S Fujita
January 2010, Journal of food science,
S Hatakeyama, and Y Hayasaki, and M Masuda, and A Kazusaka, and S Fujita
February 1974, Biochemical pharmacology,
S Hatakeyama, and Y Hayasaki, and M Masuda, and A Kazusaka, and S Fujita
September 2001, The Journal of surgical research,
Copied contents to your clipboard!