Fast and high-affinity binding of B-lymphotropic papovavirus to human B-lymphoma cell lines. 1995

M Herrmann, and M Oppenländer, and M Pawlita
Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, Germany.

Binding of B-lymphotropic papovavirus (LPV) to host cells differing in susceptibility to viral infection was determined by a newly established, direct, nonradioactive virus binding assay, which allows quantitative description of the binding characteristics by receptor saturation and Scatchard analysis. LPV binding to the highly susceptible human B-lymphoma cell line BJA-B K88 is specific, saturable, and noncooperative. Binding occurs very fast, with an association rate constant (k1) of 6.7 x 10(7) M-1s-1, and is of high affinity, with a dissociation constant (Kd) of 2.9 x 10(-12) M; and the virus-receptor complex is stable, with a half life of 70 min. The binding affinities of receptors on four other highly, moderately, or weakly susceptible human B-lymphoma cell lines were similar, with up to twofold variation around a mean Kd value of 3 x 10(-12) M, suggesting the presence of the same LPV receptor on all of these cell lines. This view is further supported by the finding that in all cases a terminal sialic acid is necessary for LPV binding. Tunicamycin has been shown to drastically induce LPV susceptibility and LPV binding in weakly and moderately susceptible B-lymphoma cell lines (O.T. Keppler, M. Herrmann, M. Oppenländer, W. Meschede, and M. Pawlita, J. Virol. 68:6933-6939, 1994). The hypothesis that the constitutively expressed and tunicamycin-induced LPV receptors are identical is strengthened by our finding that both receptor types displayed the same high affinity. LPV susceptibility of different B-lymphoma cell lines was correlated with receptor number but not with receptor affinity. The numbers of receptors per cell on highly and moderately susceptible cell lines ranged from 2,000 to 400 and were directly proportional to LPV susceptibility. This indicates that the number of high-affinity receptors per cell is a key regulating factor for the LPV host range.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D009439 Neuraminidase An enzyme that catalyzes the hydrolysis of alpha-2,3, alpha-2,6-, and alpha-2,8-glycosidic linkages (at a decreasing rate, respectively) of terminal sialic residues in oligosaccharides, glycoproteins, glycolipids, colominic acid, and synthetic substrate. (From Enzyme Nomenclature, 1992) Sialidase,Exo-alpha-Sialidase,N-Acylneuraminate Glycohydrolases,Oligosaccharide Sialidase,Exo alpha Sialidase,Glycohydrolases, N-Acylneuraminate,N Acylneuraminate Glycohydrolases,Sialidase, Oligosaccharide
D011991 Receptors, Virus Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response. Viral Entry Receptor,Viral Entry Receptors,Virus Attachment Factor,Virus Attachment Factors,Virus Attachment Receptor,Virus Attachment Receptors,Virus Entry Receptor,Virus Entry Receptors,Virus Receptor,Virus Receptors,Attachment Factor, Virus,Attachment Factors, Virus,Attachment Receptor, Virus,Attachment Receptors, Virus,Entry Receptor, Viral,Entry Receptor, Virus,Entry Receptors, Viral,Entry Receptors, Virus,Receptor, Viral Entry,Receptor, Virus,Receptor, Virus Attachment,Receptor, Virus Entry,Receptors, Viral Entry,Receptors, Virus Attachment,Receptors, Virus Entry
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Herrmann, and M Oppenländer, and M Pawlita
December 1987, Biochemical and biophysical research communications,
M Herrmann, and M Oppenländer, and M Pawlita
January 1987, Peptides,
M Herrmann, and M Oppenländer, and M Pawlita
February 1983, Journal of virology,
M Herrmann, and M Oppenländer, and M Pawlita
January 1981, Journal of medical virology,
M Herrmann, and M Oppenländer, and M Pawlita
January 1998, Advances in experimental medicine and biology,
M Herrmann, and M Oppenländer, and M Pawlita
September 1983, Proceedings of the National Academy of Sciences of the United States of America,
M Herrmann, and M Oppenländer, and M Pawlita
February 2024, Current computer-aided drug design,
M Herrmann, and M Oppenländer, and M Pawlita
November 1993, Cancer research,
Copied contents to your clipboard!