Specificity of human UDP-glucuronosyltransferases and xenobiotic glucuronidation. 1995

B Burchell, and C H Brierley, and D Rance
Department of Biochemical Medicine, Ninewells Medical School, The University, Dundee, Scotland, UK.

Several human liver UDP-Glucuronosyltransferases (UGTs) have been cloned and the cDNAs expressed in heterologous cell lines. This technological advance has allowed the assessment of the functional substrate specificity of these UGTs. The problems which may be encountered with the latency and assay of UGTs are briefly described. The data accumulated to date indicate that the Km, and possibly the Vmax/Km, for individual substrates are the best parameters to assess the specificity of the enzymes towards xenobiotic molecules. The substrate specificity of seven UGTs has been summarised from the currently available information. Of these, UGT1*02 and UGT2B8 appear to be key isoforms in the glucuronidation of a wide range of xenobiotic substrates. Additional UGTs have yet to be identified and characterised and their future inclusion may provide further insights. Finally, the functional role of each UGT in vivo has to be determined.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D005965 Glucuronates Derivatives of GLUCURONIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the 6-carboxy glucose structure. Glucosiduronates,Glucuronic Acids,Acids, Glucuronic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D014453 Glucuronosyltransferase A family of enzymes accepting a wide range of substrates, including phenols, alcohols, amines, and fatty acids. They function as drug-metabolizing enzymes that catalyze the conjugation of UDPglucuronic acid to a variety of endogenous and exogenous compounds. EC 2.4.1.17. Glucuronyltransferase,UDP Glucuronosyltransferase,17 beta-Hydroxysteroid UDP-Glucuronosyltransferase,4-Nitrophenol-UDP-Glucuronosyltransferase,7-Hydroxycoumarin UDP Glucuronyltransferase,Androsterone UDP-Glucuronosyltransferase,Bilirubin UDP-Glucuronyltransferase,Estrogen UDP-Glucuronosyltransferase,Estrone Glucuronyltransferase,Glucuronic Transferase,Morphine Glucuronyltransferase,UDP Glucuronyl Transferase,UDP-Glucuronic Acid 3-O-beta-D-Galactosyl-D-Galactose Glucuronosyltransferase,p-Nitrophenyl UDP-Glucuronosyltransferase,17 beta Hydroxysteroid UDP Glucuronosyltransferase,4 Nitrophenol UDP Glucuronosyltransferase,7 Hydroxycoumarin UDP Glucuronyltransferase,Androsterone UDP Glucuronosyltransferase,Bilirubin UDP Glucuronyltransferase,Estrogen UDP Glucuronosyltransferase,Glucuronosyltransferase, UDP,Glucuronyl Transferase, UDP,Glucuronyltransferase, 7-Hydroxycoumarin UDP,Glucuronyltransferase, Estrone,Glucuronyltransferase, Morphine,Transferase, Glucuronic,Transferase, UDP Glucuronyl,UDP Glucuronic Acid 3 O beta D Galactosyl D Galactose Glucuronosyltransferase,UDP Glucuronyltransferase, 7-Hydroxycoumarin,UDP-Glucuronosyltransferase, 17 beta-Hydroxysteroid,UDP-Glucuronosyltransferase, Androsterone,UDP-Glucuronosyltransferase, Estrogen,UDP-Glucuronosyltransferase, p-Nitrophenyl,UDP-Glucuronyltransferase, Bilirubin,p Nitrophenyl UDP Glucuronosyltransferase
D015262 Xenobiotics Chemical substances that are foreign to the biological system. They include naturally occurring compounds, drugs, environmental agents, carcinogens, insecticides, etc. Xenobiotic

Related Publications

B Burchell, and C H Brierley, and D Rance
December 2000, Chemico-biological interactions,
B Burchell, and C H Brierley, and D Rance
November 2000, Drug metabolism and disposition: the biological fate of chemicals,
B Burchell, and C H Brierley, and D Rance
June 2007, Biochemical pharmacology,
B Burchell, and C H Brierley, and D Rance
November 2003, Drug metabolism reviews,
B Burchell, and C H Brierley, and D Rance
August 2007, Molecular nutrition & food research,
B Burchell, and C H Brierley, and D Rance
May 1993, Biochemical pharmacology,
B Burchell, and C H Brierley, and D Rance
January 2005, Methods in enzymology,
B Burchell, and C H Brierley, and D Rance
September 2003, Drug metabolism and disposition: the biological fate of chemicals,
B Burchell, and C H Brierley, and D Rance
November 2007, Drug metabolism and disposition: the biological fate of chemicals,
Copied contents to your clipboard!