Mouse neuropathogenic poliovirus strains cause damage in the central nervous system distinct from poliomyelitis. 1995

M Gromeier, and H H Lu, and E Wimmer
Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook 11794-8621, USA.

Poliomyelitis as a consequence of poliovirus infection is observed only in primates. Despite a host range restricted to primates, experimental infection of rodents with certain genetically well defined poliovirus strains produces neurological disease. The outcome of infection of mice with mouse-adapted poliovirus strains has been described previously mainly in terms of paralysis and death, and it was generally assumed that these strains produce the same disease syndromes in normal mice and in mice transgenic for the human poliovirus receptor (hPVR-tg mice). We report a comparison of the clinical course and the histopathological features of neurological disease resulting from intracerebral virus inoculation in normal mice with those of murine poliomyelitis in hPVR-tg mice. The consistent pattern of clinical deficits in poliomyelitic transgenic mice contrasted with highly variable neurologic disease that developed in mice infected with different mouse-adapted polioviruses. Histopathological analysis showed a diffuse encephalomyelitis induced by specific poliovirus serotype 2 isolates in normal mice, that affected neuronal cell populations without discrimination, whereas in hPVR-tg animals, damage was restricted to spinal motor neurons. Mouse neurovirulent strains of poliovirus type 2 differed from mouse neurovirulent poliovirus type 1 derivatives in their ability to induce CNS lesions. Our findings indicate that the characteristic clinical appearance and highly specific histopathological features of poliomyelitis are mediated by the hPVR.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008813 Mice, Inbred ICR An inbred strain of mouse that is used as a general purpose research strain, for therapeutic drug testing, and for the genetic analysis of CARCINOGEN-induced COLON CANCER. Mice, Inbred ICRC,Mice, ICR,Mouse, ICR,Mouse, Inbred ICR,Mouse, Inbred ICRC,ICR Mice,ICR Mice, Inbred,ICR Mouse,ICR Mouse, Inbred,ICRC Mice, Inbred,ICRC Mouse, Inbred,Inbred ICR Mice,Inbred ICR Mouse,Inbred ICRC Mice,Inbred ICRC Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D011051 Poliomyelitis An acute infectious disease of humans, particularly children, caused by any of three serotypes of human poliovirus (POLIOVIRUS). Usually the infection is limited to the gastrointestinal tract and nasopharynx, and is often asymptomatic. The central nervous system, primarily the spinal cord, may be affected, leading to rapidly progressive paralysis, coarse FASCICULATION and hyporeflexia. Motor neurons are primarily affected. Encephalitis may also occur. The virus replicates in the nervous system, and may cause significant neuronal loss, most notably in the spinal cord. A rare related condition, nonpoliovirus poliomyelitis, may result from infections with nonpoliovirus enteroviruses. (From Adams et al., Principles of Neurology, 6th ed, pp764-5) Infantile Paralysis,Polio,Poliomyelitis, Nonpoliovirus,Poliomyelitis, Preparalytic,Encephalitis, Polio,Epidemic Acute Poliomyelitis,Polio Encephalitis,Poliomyelitis Infection,Poliomyelitis, Acute,Acute Poliomyelitis,Acute Poliomyelitis, Epidemic,Infection, Poliomyelitis,Infections, Poliomyelitis,Nonpoliovirus Poliomyelitis,Paralysis, Infantile,Poliomyelitides, Preparalytic,Poliomyelitis Infections,Poliomyelitis, Epidemic Acute,Polios,Preparalytic Poliomyelitis
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D017955 Poliovirus A species of ENTEROVIRUS which is the causal agent of POLIOMYELITIS in humans. Three serotypes (strains) exist. Transmission is by the fecal-oral route, pharyngeal secretions, or mechanical vector (flies). Vaccines with both inactivated and live attenuated virus have proven effective in immunizing against the infection. Brunhilde Virus,Human poliovirus 1,Human poliovirus 2,Human poliovirus 3,Lansing Virus,Leon Virus,Poliovirus Type 1,Poliovirus Type 2,Poliovirus Type 3,Polioviruses

Related Publications

M Gromeier, and H H Lu, and E Wimmer
July 1999, Journal of virology,
M Gromeier, and H H Lu, and E Wimmer
May 1989, Journal of neuroimmunology,
M Gromeier, and H H Lu, and E Wimmer
January 1977, Journal of biological standardization,
M Gromeier, and H H Lu, and E Wimmer
September 1960, Science (New York, N.Y.),
M Gromeier, and H H Lu, and E Wimmer
January 1965, Transactions of the American Neurological Association,
M Gromeier, and H H Lu, and E Wimmer
January 1977, Acta virologica,
M Gromeier, and H H Lu, and E Wimmer
October 1965, Journal of immunology (Baltimore, Md. : 1950),
M Gromeier, and H H Lu, and E Wimmer
October 1992, The Journal of infectious diseases,
Copied contents to your clipboard!