Follicular dendritic cells and human immunodeficiency virus infectivity. 1995

S L Heath, and J G Tew, and J G Tew, and A K Szakal, and G F Burton
Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond 23298-0678, USA.

Large amounts of human immunodeficiency virus (HIV) localize on follicular dendritic cells (FDC) in the follicles of secondary lymphoid tissues following viral infection. During clinical latency, active viral infection occurs primarily at these sites. As HIV on FDC is in the form of immune complexes, some of which may be formed with neutralizing antibody, we investigated whether HIV on FDC is infectious. We report here that HIV on FDC is highly infectious. Furthermore, FDC can convert neutralized HIV into an infectious form even in the presence of a vast excess of neutralizing antibody. Thus FDC may provide a mechanism whereby HIV infection can continue in the presence of neutralizing antibody.

UI MeSH Term Description Entries
D009500 Neutralization Tests The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50). Neutralization Test,Test, Neutralization,Tests, Neutralization
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D014066 Palatine Tonsil A round-to-oval mass of lymphoid tissue embedded in the lateral wall of the PHARYNX. There is one on each side of the oropharynx in the fauces between the anterior and posterior pillars of the SOFT PALATE. Tonsil,Tonsil, Palatine,Palatine Tonsils,Tonsils,Tonsils, Palatine
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications
D015483 HIV Antibodies Antibodies reactive with HIV ANTIGENS. AIDS Antibodies,HIV-Associated Antibodies,HTLV-III Antibodies,HTLV-III-LAV Antibodies,LAV Antibodies,Lymphadenopathy-Associated Antibodies,T-Lymphotropic Virus Type III Antibodies, Human,HIV Associated Antibodies,HTLV III Antibodies,HTLV III LAV Antibodies,Lymphadenopathy Associated Antibodies,T Lymphotropic Virus Type III Antibodies, Human,Antibodies, AIDS,Antibodies, HIV,Antibodies, HIV Associated,Antibodies, HIV-Associated,Antibodies, HTLV III,Antibodies, HTLV-III,Antibodies, HTLV-III-LAV,Antibodies, LAV,Antibodies, Lymphadenopathy Associated,Antibodies, Lymphadenopathy-Associated
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte

Related Publications

S L Heath, and J G Tew, and J G Tew, and A K Szakal, and G F Burton
January 2000, Journal of cellular and molecular medicine,
S L Heath, and J G Tew, and J G Tew, and A K Szakal, and G F Burton
January 2009, Journal of virology,
S L Heath, and J G Tew, and J G Tew, and A K Szakal, and G F Burton
January 2018, Frontiers in immunology,
S L Heath, and J G Tew, and J G Tew, and A K Szakal, and G F Burton
January 1995, Current topics in microbiology and immunology,
S L Heath, and J G Tew, and J G Tew, and A K Szakal, and G F Burton
May 1999, Journal of virology,
S L Heath, and J G Tew, and J G Tew, and A K Szakal, and G F Burton
January 1995, Current topics in microbiology and immunology,
S L Heath, and J G Tew, and J G Tew, and A K Szakal, and G F Burton
December 1990, The Journal of general virology,
S L Heath, and J G Tew, and J G Tew, and A K Szakal, and G F Burton
May 1997, Cell and tissue research,
S L Heath, and J G Tew, and J G Tew, and A K Szakal, and G F Burton
January 1994, Virchows Archiv : an international journal of pathology,
S L Heath, and J G Tew, and J G Tew, and A K Szakal, and G F Burton
February 1993, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!