Comparison of corelease of noradrenaline and ATP evoked by hypogastric nerve stimulation and field stimulation in guinea-pig vas deferens. 1995

J Gonçalves, and B Driessen, and I von Kügelgen, and K Starke
Pharmakologisches Institut, Albert-Ludwigs-Universität Freiburg, Germany.

Contractions and overflow of tritium and ATP elicited by hypogastric nerve stimulation (HNS) and field stimulation (FS) were studied in the guinea-pig isolated vas deferens preincubated with [3H]-noradrenaline. ATP was measured by means of the luciferin-luciferase technique. HNS and FS elicited contraction, tritium overflow and ATP overflow. HNS at supramaximal current strength produced smaller responses than did FS at supramaximal current strength (210 pulses/7 Hz). Supramaximal HNS and submaximal FS were used in the remainder of the study. Prazosin (0.3 mumol/l) reduced contractions and the overflow of ATP elicited by both HNS and FS; the evoked overflow of tritium was not changed (210 pulses/7 Hz). Combined administration of prazosin (0.3 mumol/l) and suramin (300 mumol/l) abolished contractions and reduced the overflow of ATP elicited by both HNS and FS slightly more than did prazosin alone; tritium overflow again was not changed (210 pulses/7 Hz). Contractions, tritium overflow and ATP overflow increased with the frequency of both HNS and FS (from 7 to 25 Hz; 210 pulses); the increase in ATP overflow with frequency was more marked than the increase in tritium overflow. The preferential increase of ATP overflow with the frequency of HNS and FS persisted in the combined presence of prazosin (0.3 mumol/l) and suramin (300 mumol/l). The study confirms for HNS, a more physiologic way of sympathetic nerve stimulation, several observations previously obtained with FS. First, HNS-evoked ATP release is detectable as an overflow of ATP into the superfusion fluid.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007001 Hypogastric Plexus A complex network of nerve fibers in the pelvic region. The hypogastric plexus distributes sympathetic fibers from the lumbar paravertebral ganglia and the aortic plexus, parasympathetic fibers from the pelvic nerve, and visceral afferents. The bilateral pelvic plexus is in its lateral extent. Pelvic Plexus,Plexus, Hypogastric,Plexus, Pelvic
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011224 Prazosin A selective adrenergic alpha-1 antagonist used in the treatment of HEART FAILURE; HYPERTENSION; PHEOCHROMOCYTOMA; RAYNAUD DISEASE; PROSTATIC HYPERTROPHY; and URINARY RETENTION. Furazosin,Minipress,Pratsiol,Prazosin HCL,Prazosin Hydrochloride,HCL, Prazosin,Hydrochloride, Prazosin
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000317 Adrenergic alpha-Antagonists Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma. Adrenergic alpha-Receptor Blockaders,alpha-Adrenergic Blocking Agents,alpha-Adrenergic Receptor Blockaders,alpha-Blockers, Adrenergic,Adrenergic alpha-Blockers,alpha-Adrenergic Antagonists,alpha-Adrenergic Blockers,Adrenergic alpha Antagonists,Adrenergic alpha Blockers,Adrenergic alpha Receptor Blockaders,Agents, alpha-Adrenergic Blocking,Antagonists, alpha-Adrenergic,Blockaders, Adrenergic alpha-Receptor,Blockaders, alpha-Adrenergic Receptor,Blockers, alpha-Adrenergic,Blocking Agents, alpha-Adrenergic,Receptor Blockaders, alpha-Adrenergic,alpha Adrenergic Antagonists,alpha Adrenergic Blockers,alpha Adrenergic Blocking Agents,alpha Adrenergic Receptor Blockaders,alpha Blockers, Adrenergic,alpha-Antagonists, Adrenergic,alpha-Receptor Blockaders, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013498 Suramin A polyanionic compound with an unknown mechanism of action. It is used parenterally in the treatment of African trypanosomiasis and it has been used clinically with diethylcarbamazine to kill the adult Onchocerca. (From AMA Drug Evaluations Annual, 1992, p1643) It has also been shown to have potent antineoplastic properties. Germanin,Moranil,Naganin,Naganol,Naphuride,Suramin Sodium,Suramin, Hexasodium Salt,Suramin, Monosodium Salt,Hexasodium Salt Suramin,Monosodium Salt Suramin,Salt Suramin, Hexasodium,Salt Suramin, Monosodium,Sodium, Suramin

Related Publications

J Gonçalves, and B Driessen, and I von Kügelgen, and K Starke
August 1994, Naunyn-Schmiedeberg's archives of pharmacology,
J Gonçalves, and B Driessen, and I von Kügelgen, and K Starke
October 1991, Naunyn-Schmiedeberg's archives of pharmacology,
J Gonçalves, and B Driessen, and I von Kügelgen, and K Starke
May 1969, The Journal of pharmacy and pharmacology,
J Gonçalves, and B Driessen, and I von Kügelgen, and K Starke
March 1984, British journal of pharmacology,
J Gonçalves, and B Driessen, and I von Kügelgen, and K Starke
November 1963, Naunyn-Schmiedebergs Archiv fur experimentelle Pathologie und Pharmakologie,
J Gonçalves, and B Driessen, and I von Kügelgen, and K Starke
September 1975, British journal of pharmacology,
J Gonçalves, and B Driessen, and I von Kügelgen, and K Starke
September 1967, European journal of pharmacology,
J Gonçalves, and B Driessen, and I von Kügelgen, and K Starke
January 1967, Naunyn-Schmiedebergs Archiv fur experimentelle Pathologie und Pharmakologie,
J Gonçalves, and B Driessen, and I von Kügelgen, and K Starke
June 1971, European journal of pharmacology,
J Gonçalves, and B Driessen, and I von Kügelgen, and K Starke
September 1968, The Journal of physiology,
Copied contents to your clipboard!