| D010300 |
Parkinson Disease |
A progressive, degenerative neurologic disease characterized by a TREMOR that is maximal at rest, retropulsion (i.e. a tendency to fall backwards), rigidity, stooped posture, slowness of voluntary movements, and a masklike facial expression. Pathologic features include loss of melanin containing neurons in the substantia nigra and other pigmented nuclei of the brainstem. LEWY BODIES are present in the substantia nigra and locus coeruleus but may also be found in a related condition (LEWY BODY DISEASE, DIFFUSE) characterized by dementia in combination with varying degrees of parkinsonism. (Adams et al., Principles of Neurology, 6th ed, p1059, pp1067-75) |
Idiopathic Parkinson Disease,Lewy Body Parkinson Disease,Paralysis Agitans,Primary Parkinsonism,Idiopathic Parkinson's Disease,Lewy Body Parkinson's Disease,Parkinson Disease, Idiopathic,Parkinson's Disease,Parkinson's Disease, Idiopathic,Parkinson's Disease, Lewy Body,Parkinsonism, Primary |
|
| D003937 |
Diagnosis, Differential |
Determination of which one of two or more diseases or conditions a patient is suffering from by systematically comparing and contrasting results of diagnostic measures. |
Diagnoses, Differential,Differential Diagnoses,Differential Diagnosis |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D013494 |
Supranuclear Palsy, Progressive |
A degenerative disease of the central nervous system characterized by balance difficulties; OCULAR MOTILITY DISORDERS (supranuclear ophthalmoplegia); DYSARTHRIA; swallowing difficulties; and axial DYSTONIA. Onset is usually in the fifth decade and disease progression occurs over several years. Pathologic findings include neurofibrillary degeneration and neuronal loss in the dorsal MESENCEPHALON; SUBTHALAMIC NUCLEUS; RED NUCLEUS; pallidum; dentate nucleus; and vestibular nuclei. (From Adams et al., Principles of Neurology, 6th ed, pp1076-7) |
Ophthalmoplegia, Progressive Supranuclear,Progressive Supranuclear Ophthalmoplegia,Progressive Supranuclear Palsy 1,Steele-Richardson-Olszewski Syndrome,Palsy, Progressive Supranuclear,Progressive Supranuclear Palsy,Richardson's Syndrome,Steele-Richardson-Olszewski Disease,Supranuclear Palsy, Progressive, 1,Progressive Supranuclear Palsies,Richardson Syndrome,Steele Richardson Olszewski Disease,Steele Richardson Olszewski Syndrome,Supranuclear Ophthalmoplegia, Progressive,Supranuclear Palsies, Progressive |
|
| D015899 |
Tomography, Emission-Computed, Single-Photon |
A method of computed tomography that uses radionuclides which emit a single photon of a given energy. The camera is rotated 180 or 360 degrees around the patient to capture images at multiple positions along the arc. The computer is then used to reconstruct the transaxial, sagittal, and coronal images from the 3-dimensional distribution of radionuclides in the organ. The advantages of SPECT are that it can be used to observe biochemical and physiological processes as well as size and volume of the organ. The disadvantage is that, unlike positron-emission tomography where the positron-electron annihilation results in the emission of 2 photons at 180 degrees from each other, SPECT requires physical collimation to line up the photons, which results in the loss of many available photons and hence degrades the image. |
CAT Scan, Single-Photon Emission,CT Scan, Single-Photon Emission,Radionuclide Tomography, Single-Photon Emission-Computed,SPECT,Single-Photon Emission-Computed Tomography,Tomography, Single-Photon, Emission-Computed,Single-Photon Emission CT Scan,Single-Photon Emission Computer-Assisted Tomography,Single-Photon Emission Computerized Tomography,CAT Scan, Single Photon Emission,CT Scan, Single Photon Emission,Emission-Computed Tomography, Single-Photon,Radionuclide Tomography, Single Photon Emission Computed,Single Photon Emission CT Scan,Single Photon Emission Computed Tomography,Single Photon Emission Computer Assisted Tomography,Single Photon Emission Computerized Tomography,Tomography, Single-Photon Emission-Computed |
|
| D017983 |
Receptors, Catecholamine |
Cell surface proteins that bind catecholamines with high affinity and trigger intracellular changes which influence the behavior of cells. The catecholamine messengers epinephrine, norepinephrine, and dopamine are synthesized from tyrosine by a common biosynthetic pathway. |
Catecholamine Receptors,Catecholamine Receptor,Receptors, Catecholamines,Catecholamines Receptors,Receptor, Catecholamine |
|