Peripheral nociceptive effects of alpha 2-adrenergic receptor agonists in the rat. 1995

S G Khasar, and P G Green, and B Chou, and J D Levine
Department of Medicine, University of California, San Francisco 94143-0452, USA.

We have previously shown that norepinephrine can produce hyperalgesia via an alpha 2-adrenergic receptor mechanism. The alpha 2-adrenergic receptor agonist clonidine has, however, also been shown to produce peripheral analgesia. In view of the multiple alpha 2-subtypes currently known (i.e. alpha 2A, alpha 2B and alpha 2C), we evaluate the alpha 2-receptor subtypes mediating norepinephrine-induced peripheral hyperalgesia and clonidine analgesia. Norepinephrine and the alpha 2-adrenergic agonists clonidine and UK 14,304 (1-1000 ng), when co-injected with the calcium ionophore A23187 (1000 ng) produced dose-dependent hyperalgesia in the Randall-Selitto paw withdrawal test. Norepinephrine (100 ng) hyperalgesia was dose-dependently antagonized by alpha 2-adrenergic receptor antagonists. From the estimated ID50, the rank order of potency was: SK&F 104856 (alpha 2B) approximately imiloxan (alpha 2B) > rauwolscine (alpha 2C) >> BRL 44408 (alpha 2A). Norepinephrine hyperalgesia was not significantly affected by pertussis-toxin treatment. Prostaglandin E2 (100 ng) hyperalgesia was inhibited dose-dependently, by clonidine and UK 14,304. Rauwolscine was more potent in reversing the inhibitory effect of clonidine on prostaglandin E2 than imiloxan while BRL 44408 was ineffective. The inhibitory effect of clonidine on prostaglandin E2 hyperalgesia was reversed by pertussis toxin. These data suggest that alpha 2B-subtype receptors mediate (norepinephrine hyperalgesia while the antinociceptive effect of alpha 2-agonist is mediated by the alpha 2C-subtype receptor. Differential coupling of these receptor subtypes to second messenger systems and location on different cell types in the rat paw may explain, at least in part, their differential responses to alpha 2-agonist stimulation, leading to hyperalgesia and analgesia.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010147 Pain Measurement Scales, questionnaires, tests, and other methods used to assess pain severity and duration in patients or experimental animals to aid in diagnosis, therapy, and physiological studies. Analgesia Tests,Analogue Pain Scale,Formalin Test,McGill Pain Questionnaire,Nociception Tests,Pain Assessment,Pain Intensity,Pain Severity,Tourniquet Pain Test,Visual Analogue Pain Scale,Analog Pain Scale,Assessment, Pain,McGill Pain Scale,Visual Analog Pain Scale,Analgesia Test,Analog Pain Scales,Analogue Pain Scales,Formalin Tests,Intensity, Pain,Measurement, Pain,Nociception Test,Pain Assessments,Pain Intensities,Pain Measurements,Pain Questionnaire, McGill,Pain Scale, Analog,Pain Scale, Analogue,Pain Scale, McGill,Pain Severities,Pain Test, Tourniquet,Questionnaire, McGill Pain,Scale, Analog Pain,Scale, Analogue Pain,Scale, McGill Pain,Severity, Pain,Test, Analgesia,Test, Formalin,Test, Nociception,Test, Tourniquet Pain,Tests, Nociception,Tourniquet Pain Tests
D011810 Quinoxalines Quinoxaline
D003000 Clonidine An imidazoline sympatholytic agent that stimulates ALPHA-2 ADRENERGIC RECEPTORS and central IMIDAZOLINE RECEPTORS. It is commonly used in the management of HYPERTENSION. Catapres,Catapresan,Catapressan,Chlophazolin,Clofelin,Clofenil,Clonidine Dihydrochloride,Clonidine Hydrochloride,Clonidine Monohydrobromide,Clonidine Monohydrochloride,Clopheline,Dixarit,Gemiton,Hemiton,Isoglaucon,Klofelin,Klofenil,M-5041T,ST-155,Dihydrochloride, Clonidine,Hydrochloride, Clonidine,M 5041T,M5041T,Monohydrobromide, Clonidine,Monohydrochloride, Clonidine,ST 155,ST155
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic
D000068438 Brimonidine Tartrate A quinoxaline derivative and ADRENERGIC ALHPA-2 RECEPTOR AGONIST that is used to manage INTRAOCULAR PRESSURE associated with OPEN-ANGLE GLAUCOMA and OCULAR HYPERTENSION. 5-Bromo-6-(2-imidazolin-2-ylamino)quinoxaline D-tartrate,5-bromo-6-(imidazolidinylideneamino)quinoxaline,5-bromo-6-(imidazolin-2-ylamino)quinoxaline,AGN 190342,AGN-190342,Alphagan,Alphagan P,Brimonidine,Brimonidine Purite,Brimonidine Tartrate (1:1),Brimonidine Tartrate (1:1), (S-(R*,R*))-Isomer,Brimonidine Tartrate, (R-(R*,R*))-Isomer,Bromoxidine,Mirvaso,Ratio-Brimonidine,Sanrosa,UK 14,304,UK 14,304-18,UK 14304,UK 14308,UK-14,304-18,UK-14,308,UK-14304,AGN190342,Ratio Brimonidine,UK 14,304 18,UK 14,30418,UK 14,308,UK14,30418,UK14,308,UK14304

Related Publications

S G Khasar, and P G Green, and B Chou, and J D Levine
January 1987, Polski tygodnik lekarski (Warsaw, Poland : 1960),
S G Khasar, and P G Green, and B Chou, and J D Levine
May 1997, Canadian journal of anaesthesia = Journal canadien d'anesthesie,
S G Khasar, and P G Green, and B Chou, and J D Levine
August 1988, Pharmacological research communications,
S G Khasar, and P G Green, and B Chou, and J D Levine
October 1991, Anesthesiology,
S G Khasar, and P G Green, and B Chou, and J D Levine
June 1986, Biulleten' eksperimental'noi biologii i meditsiny,
S G Khasar, and P G Green, and B Chou, and J D Levine
April 1991, Anesthesiology,
S G Khasar, and P G Green, and B Chou, and J D Levine
March 1983, Neuropharmacology,
S G Khasar, and P G Green, and B Chou, and J D Levine
November 1984, Federation proceedings,
S G Khasar, and P G Green, and B Chou, and J D Levine
February 1995, Journal of glaucoma,
Copied contents to your clipboard!