Immunolocalization of lamins and nuclear pore complex proteins by atomic force microscopy. 1995

S Schneider, and G Folprecht, and G Krohne, and H Oberleithner
Department of Physiology, University of Würzburg, Röntgenring 9, D-97070 Würzburg, Germany.

The nuclear envelope functions as a selective barrier separating the nuclear from the cytosolic compartment. Nuclear pore complexes (NPCs) mediate nuclear import and export of macromolecules and, therefore, are potential regulators of gene expression. In this study we applied atomic force microscopy (AFM) to visualize the three dimensional (3D) structure of individual NPCs in the absence and presence of two different antibodies, one directed against a pore protein (gp62) and another directed against Xenopus lamin LIII, a component of the nuclear lamina, a filament meshwork localized on the nucleoplasmic side of the nuclear envelope (NE) adjacent to and interacting with NPCs. Using 12-nm gold-labelled secondary antibodies and transmission electron microscopy we could clearly localize the primary single anti-gp62 antibody on NPCs and the primary single anti-LIII antibody between NPCs. Using AFM, the secondary antibodies against anti-gp62 could be detected as particles 7 nm in height on the nucleoplasmic face of NPCs. The secondary antibodies against anti-LIII could be clearly identified between NPCs. The secondary antibodies, attached to a 12-nm colloidal gold particle and visualized on glass, revealed similar shapes and heights as found on NEs. According to the 3D images, the volume of a single gold particle conjugated with secondary antibodies was 10203 nm3. This volume is equivalent to the volume of 38 IgG molecules associated with one individual gold particle. A similar volume of 11987 nm3 was calculated from a model assuming that the 150-kDa IgG molecules perfectly cover the spherical gold particle. We conclude that AFM can be used for identifying antibodies or other macromolecules associated with biomembranes.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D010316 Particle Size Relating to the size of solids. Particle Sizes,Size, Particle,Sizes, Particle
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D018625 Microscopy, Atomic Force A type of scanning probe microscopy in which a probe systematically rides across the surface of a sample being scanned in a raster pattern. The vertical position is recorded as a spring attached to the probe rises and falls in response to peaks and valleys on the surface. These deflections produce a topographic map of the sample. Atomic Force Microscopy,Force Microscopy,Scanning Force Microscopy,Atomic Force Microscopies,Force Microscopies,Force Microscopies, Scanning,Force Microscopy, Scanning,Microscopies, Atomic Force,Microscopies, Force,Microscopies, Scanning Force,Microscopy, Force,Microscopy, Scanning Force,Scanning Force Microscopies

Related Publications

S Schneider, and G Folprecht, and G Krohne, and H Oberleithner
January 2006, Methods in molecular biology (Clifton, N.J.),
S Schneider, and G Folprecht, and G Krohne, and H Oberleithner
April 2000, Pflugers Archiv : European journal of physiology,
S Schneider, and G Folprecht, and G Krohne, and H Oberleithner
August 2016, Nature nanotechnology,
S Schneider, and G Folprecht, and G Krohne, and H Oberleithner
August 2018, Life science alliance,
S Schneider, and G Folprecht, and G Krohne, and H Oberleithner
January 2021, Methods in enzymology,
S Schneider, and G Folprecht, and G Krohne, and H Oberleithner
January 2022, Methods in molecular biology (Clifton, N.J.),
S Schneider, and G Folprecht, and G Krohne, and H Oberleithner
January 1997, Electrophoresis,
S Schneider, and G Folprecht, and G Krohne, and H Oberleithner
August 1995, The Journal of membrane biology,
S Schneider, and G Folprecht, and G Krohne, and H Oberleithner
April 2002, Protein and peptide letters,
S Schneider, and G Folprecht, and G Krohne, and H Oberleithner
March 2016, Biochimica et biophysica acta,
Copied contents to your clipboard!