Identification of the factors that interact with NCBP, an 80 kDa nuclear cap binding protein. 1995

N Kataoka, and M Ohno, and I Moda, and Y Shimura
Department of Biophysics, Faculty of Science, Kyoto University, Japan.

It has been shown that the monomethylated cap structure plays important roles in pre-mRNA splicing and nuclear export of RNA. As a candidate for the factor involved in these nuclear events we have previously purified an 80 kDa nuclear cap binding protein (NCBP) from a HeLa cell nuclear extract and isolated its full-length cDNA. In this report, in order to obtain a clue to the cellular functions of NCBP, we attempted to identify a factor(s) that interacts with NCBP. Using the yeast two-hybrid system we isolated three clones from a HeLa cell cDNA library. We designated the proteins encoded by these clones NIPs (NCBP interacting proteins). NIP1 and NIP2 have an RNP consensus-type RNA binding domain, whereas NIP3 contains a unique domain of Arg-Glu or Lys-Glu dipeptide repeats. We also show that NCBP requires NIP1 for binding to the cap structure. Possible roles of NIPs in cap-dependent nuclear processes are discussed.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012261 Ribonucleoproteins Complexes of RNA-binding proteins with ribonucleic acids (RNA). Ribonucleoprotein
D012315 RNA Caps Nucleic acid structures found on the 5' end of eukaryotic cellular and viral messenger RNA and some heterogeneous nuclear RNAs. These structures, which are positively charged, protect the above specified RNAs at their termini against attack by phosphatases and other nucleases and promote mRNA function at the level of initiation of translation. Analogs of the RNA caps (RNA CAP ANALOGS), which lack the positive charge, inhibit the initiation of protein synthesis. RNA Cap,5' Capped RNA,5' mRNA Cap Structure,Cap, RNA,Caps, RNA,RNA, 5' Capped
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D016601 RNA-Binding Proteins Proteins that bind to RNA molecules. Included here are RIBONUCLEOPROTEINS and other proteins whose function is to bind specifically to RNA. Double-Stranded RNA-Binding Protein,Double-Stranded RNA-Binding Proteins,ds RNA-Binding Protein,RNA-Binding Protein,ds RNA-Binding Proteins,Double Stranded RNA Binding Protein,Double Stranded RNA Binding Proteins,Protein, Double-Stranded RNA-Binding,Protein, ds RNA-Binding,RNA Binding Protein,RNA Binding Proteins,RNA-Binding Protein, Double-Stranded,RNA-Binding Protein, ds,RNA-Binding Proteins, Double-Stranded,ds RNA Binding Protein

Related Publications

N Kataoka, and M Ohno, and I Moda, and Y Shimura
July 1988, Archives of biochemistry and biophysics,
N Kataoka, and M Ohno, and I Moda, and Y Shimura
March 2016, Molecular and cellular biochemistry,
N Kataoka, and M Ohno, and I Moda, and Y Shimura
July 1989, Molecular and cellular biology,
N Kataoka, and M Ohno, and I Moda, and Y Shimura
October 1993, The Journal of biological chemistry,
N Kataoka, and M Ohno, and I Moda, and Y Shimura
January 2001, Biochemistry and cell biology = Biochimie et biologie cellulaire,
N Kataoka, and M Ohno, and I Moda, and Y Shimura
March 1999, FEMS immunology and medical microbiology,
N Kataoka, and M Ohno, and I Moda, and Y Shimura
December 1997, Biochemical and biophysical research communications,
N Kataoka, and M Ohno, and I Moda, and Y Shimura
April 1989, The Journal of biological chemistry,
N Kataoka, and M Ohno, and I Moda, and Y Shimura
January 1990, Methods in enzymology,
Copied contents to your clipboard!