The mechansim of antibody-dependent, eosinophil-mediated damage to schistosomula of Schistosoma mansoni in vitro: a study by phase-contrast and electron microscopy. 1978

A M Glauert, and A E Butterworth, and R F Sturrock, and V Houba

A characteristic sequence of events has been identified by phase-contrast and electron microscopy during antibody-dependent, eosinophil-mediated damage to schistosomula of Schistosoma mansoni in vitro. Human eosinophils initially adhere to the intact schistosomulum and then, in the presence of antibody, flatten and spread very intimately over the parasite's surface. Subsequently, dense material similar to the contents of the lysosomal granules of the eosinophils appears in the extracellular space between the eosinophil and the schistosomulum, probably following fusion of the granules with the plasma membrane of the cell. Eventually all the eosinophils adhering to the parasite are completely degranulated and large amounts of the dense material are observed on the surface of the schistosomulum. This release of granular material from the eosinophils is followed by structural changes in the schistosomulum, starting with vacuolation of the inner layer of the tegument, followed by removal of the tegument, often in the form of large sheets. Subsequently the tegument disintegrates and the fragments are phagocytosed by other eosinophils which have not degranulated. Eosinophils then attach to the exposed muscle layers of the schistosomula and participate in the further degradation of the parasites by phagocytosing fragments of muscle fibres and other cellular components. This sequence of events is compared with published observations of the damage induced by various combinations of antibody, complement and effector cells in vitro, and of cell-mediated damage to schistosomula in vivo, and it is concluded that the observations described in the present paper may reflect a process of destruction of schistosomula in the immune host.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D004804 Eosinophils Granular leukocytes with a nucleus that usually has two lobes connected by a slender thread of chromatin, and cytoplasm containing coarse, round granules that are uniform in size and stainable by eosin. Eosinophil
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000920 Antibody-Dependent Cell Cytotoxicity The phenomenon of antibody-mediated target cell destruction by non-sensitized effector cells. The identity of the target cell varies, but it must possess surface IMMUNOGLOBULIN G whose Fc portion is intact. The effector cell is a "killer" cell possessing Fc receptors. It may be a lymphocyte lacking conventional B- or T-cell markers, or a monocyte, macrophage, or polynuclear leukocyte, depending on the identity of the target cell. The reaction is complement-independent. ADCC,Cytotoxicity, Antibody-Dependent Cell,Cell Cytoxicity, Antibody-Dependent,Antibody Dependent Cell Cytotoxicity,Antibody-Dependent Cell Cytotoxicities,Antibody-Dependent Cell Cytoxicities,Antibody-Dependent Cell Cytoxicity,Cell Cytotoxicities, Antibody-Dependent,Cell Cytotoxicity, Antibody-Dependent,Cell Cytoxicities, Antibody-Dependent,Cell Cytoxicity, Antibody Dependent,Cytotoxicities, Antibody-Dependent Cell,Cytotoxicity, Antibody Dependent Cell,Cytoxicities, Antibody-Dependent Cell,Cytoxicity, Antibody-Dependent Cell
D012550 Schistosoma mansoni A species of trematode blood flukes of the family Schistosomatidae. It is common in the Nile delta. The intermediate host is the planorbid snail. This parasite causes schistosomiasis mansoni and intestinal bilharziasis. Schistosoma mansonus,mansonus, Schistosoma

Related Publications

A M Glauert, and A E Butterworth, and R F Sturrock, and V Houba
July 1977, Federation proceedings,
A M Glauert, and A E Butterworth, and R F Sturrock, and V Houba
January 1977, The Journal of experimental medicine,
A M Glauert, and A E Butterworth, and R F Sturrock, and V Houba
December 1982, Cellular immunology,
A M Glauert, and A E Butterworth, and R F Sturrock, and V Houba
March 1985, Parasite immunology,
A M Glauert, and A E Butterworth, and R F Sturrock, and V Houba
May 1981, Journal of immunology (Baltimore, Md. : 1950),
A M Glauert, and A E Butterworth, and R F Sturrock, and V Houba
February 1979, Journal of immunology (Baltimore, Md. : 1950),
A M Glauert, and A E Butterworth, and R F Sturrock, and V Houba
June 1977, Journal of immunology (Baltimore, Md. : 1950),
A M Glauert, and A E Butterworth, and R F Sturrock, and V Houba
July 1976, Clinical and experimental immunology,
A M Glauert, and A E Butterworth, and R F Sturrock, and V Houba
December 1978, Journal of immunology (Baltimore, Md. : 1950),
A M Glauert, and A E Butterworth, and R F Sturrock, and V Houba
August 1987, The Journal of parasitology,
Copied contents to your clipboard!