Deep nephron function after release of acute unilateral ureteral obstruction in the young rat. 1978

J Buerkert, and D Martin, and M Head, and J Prasad, and S Klahr

The effects of acute unilateral ureteral obstruction (UUO) of 18 h duration on deep nephron function was evaluated in 14 weanling rats with the technique of micropuncture. After release of UUO, 3.4 +/- 0.66% (SE) of the filtered water remained at the tip of the collecting duct nearly fivefold greater than in controls (0.75 +/- 0.10%). Similar differences were seen in fractional sodium that remained at this site. The ratio of tubular fluid osmolality to that of plasma was also reduced in the UUO group (1.53 +/- 0.06 vs. 4.60 +/- 0.26 in controls, P less than 0.001). Single nephron glomerular filtration rate of cortical and deep nephrons was significantly less (P less than 0.001) after release of UUO. Although the percentage of filtering nephrons was significantly reduced in both nephron populations, the decline in glomerular filtration rate was greater in cortical than in juxtamedullary nephrons (cortical:juxtamedullary nephrons = 27.6 +/- 4.5% vs. 53.3 +/- 5.2% in controls, P less than 0.005) which suggests that single nephron glomerular filtration rate is redistributed to deep nephrons after release of UUO. In contrast to cortical nephrons, the amount of tubular fluid which remains near the bend of the loop of Henle of deep nephrons was greater after release of UUO. This appeared to be the result of a decrease in the reabsorption of both water (tubular fluid:plasma inulin = 2.41 +/- 0.16 vs. 7.94 +/- 0.69 in controls, P less than 0.001) and sodium (52.3 +/- 4% vs. 40.7 +/- 2.9% of the filtered sodium in controls, P less than 0.02). It is suggested that this altered reabsorption occurs along both the proximal tubule and descending limb of the loop of Henle of juxtamedullary nephrons. Inner medullary plasma flow (IMPF), as measured with the [125I]albumin-accumulation technique, was significantly depressed before release of UUO, but exceeded control values 90 min postrelease. Such changes imply that the filtration fraction of deep nephrons is decreased and that physical factors in the proximal tubular reabsorption of sodium have been altered. When papillary solute content was measured before release of UUO it was low (428 +/- 23 vs. 1,205 +/- 106 mosmol/kg in controls, P less than 0.001) which indicates that the decline in papillary osmolality is not a consequence of the increased IMPF seen after ureteral release, but rather precedes it. In fact, the decline in papillary osmolality may contribute to the increase in IMPF after release of UUO and to the decreased reabsorption of fluid along the descending limb of the loop of Henle.

UI MeSH Term Description Entries
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D007678 Kidney Glomerulus A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue. Glomerulus, Kidney
D007679 Kidney Medulla The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces. Kidney Papilla,Kidney Medullas,Kidney Papillas,Medulla, Kidney,Medullas, Kidney,Papilla, Kidney,Papillas, Kidney
D007684 Kidney Tubules Long convoluted tubules in the nephrons. They collect filtrate from blood passing through the KIDNEY GLOMERULUS and process this filtrate into URINE. Each renal tubule consists of a BOWMAN CAPSULE; PROXIMAL KIDNEY TUBULE; LOOP OF HENLE; DISTAL KIDNEY TUBULE; and KIDNEY COLLECTING DUCT leading to the central cavity of the kidney (KIDNEY PELVIS) that connects to the URETER. Kidney Tubule,Tubule, Kidney,Tubules, Kidney
D008138 Loop of Henle The U-shaped portion of the renal tubule in the KIDNEY MEDULLA, consisting of a descending limb and an ascending limb. It is situated between the PROXIMAL KIDNEY TUBULE and the DISTAL KIDNEY TUBULE. Ascending Limb of Loop of Henle,Descending Limb of Loop of Henle,Henle Loop
D008297 Male Males
D009399 Nephrons The functional units of the kidney, consisting of the glomerulus and the attached tubule. Nephron
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D005919 Glomerular Filtration Rate The volume of water filtered out of plasma through glomerular capillary walls into Bowman's capsules per unit of time. It is considered to be equivalent to INULIN clearance. Filtration Rate, Glomerular,Filtration Rates, Glomerular,Glomerular Filtration Rates,Rate, Glomerular Filtration,Rates, Glomerular Filtration

Related Publications

J Buerkert, and D Martin, and M Head, and J Prasad, and S Klahr
June 1977, The Journal of clinical investigation,
J Buerkert, and D Martin, and M Head, and J Prasad, and S Klahr
February 1999, The Journal of urology,
J Buerkert, and D Martin, and M Head, and J Prasad, and S Klahr
October 1974, The American journal of physiology,
J Buerkert, and D Martin, and M Head, and J Prasad, and S Klahr
July 1979, Canadian journal of physiology and pharmacology,
J Buerkert, and D Martin, and M Head, and J Prasad, and S Klahr
April 2010, Urology,
J Buerkert, and D Martin, and M Head, and J Prasad, and S Klahr
April 1988, Nihon Hinyokika Gakkai zasshi. The japanese journal of urology,
J Buerkert, and D Martin, and M Head, and J Prasad, and S Klahr
May 1993, Urology,
J Buerkert, and D Martin, and M Head, and J Prasad, and S Klahr
April 1988, Nihon Hinyokika Gakkai zasshi. The japanese journal of urology,
J Buerkert, and D Martin, and M Head, and J Prasad, and S Klahr
January 1993, Nephron,
J Buerkert, and D Martin, and M Head, and J Prasad, and S Klahr
September 1997, The Journal of urology,
Copied contents to your clipboard!