Origin of intrafusal fibers from a subset of primary myotubes in the rat. 1995

J Kucera, and J M Walro
Department of Neurology, Boston University Medical Center, MA 02118-2394, USA.

S46, a monoclonal antibody (mAb) specific for the SM-1 and SM-2 isoforms of avian slow myosin heavy chains (MHC), was used to study the earliest stages of development of intrafusal fibers in muscle spindles of the rat hindlimb. Spindles formed only in the regions of fetal muscles that contained primary myotubes reactive to mAb S46, such as the axial region of the tibialis anterior muscle. The first intrafusal fiber to form, the nuclear bag2 fiber, originated from within the population of S46-reactive primary myotubes. Binding of mAb S46 by myotubes giving rise to the bag2 fibers preceded the appearance of encapsulated spindles in the muscles by electron microscopy. However, reactivity to S46 intensified in the myotubes transforming into bag2 fibers after the innervation of the fibers by afferents, and dissipated in myotubes differentiating into slow-twitch (type I) extrafusal fibers. Thus, afferents may enhance intrafusal expression of the MHC isoform reactive to mAb S46. The pattern of S46 binding to nuclear bag and chain intrafusal fibers in both developing and adult spindles was the same as that reported for the mAb ALD19, suggesting that both antibodies bind to the same MHC isoform. This isoform is probably a developmental form of slow myosin, because it was transiently expressed during the development of type I extrafusal fibers. The origin of bag2 intrafusal and type I extrafusal fibers from a bipotential subpopulation of primary myotubes reactive to mAb S46 correlates with the location of muscle spindles in the slow regions of muscles in adult rat hindlimbs.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009470 Muscle Spindles Skeletal muscle structures that function as the MECHANORECEPTORS responsible for the stretch or myotactic reflex (REFLEX, STRETCH). They are composed of a bundle of encapsulated SKELETAL MUSCLE FIBERS, i.e., the intrafusal fibers (nuclear bag 1 fibers, nuclear bag 2 fibers, and nuclear chain fibers) innervated by SENSORY NEURONS. Muscle Stretch Receptors,Neuromuscular Spindles,Receptors, Stretch, Muscle,Stretch Receptors, Muscle,Muscle Spindle,Muscle Stretch Receptor,Neuromuscular Spindle,Receptor, Muscle Stretch,Receptors, Muscle Stretch,Spindle, Muscle,Spindle, Neuromuscular,Spindles, Muscle,Spindles, Neuromuscular,Stretch Receptor, Muscle
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D005260 Female Females
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D006614 Hindlimb Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73) Hindlimbs

Related Publications

J Kucera, and J M Walro
December 1969, Experimental neurology,
J Kucera, and J M Walro
October 1971, The Journal of cell biology,
J Kucera, and J M Walro
February 1972, The Journal of cell biology,
J Kucera, and J M Walro
December 1973, The Journal of cell biology,
J Kucera, and J M Walro
November 1978, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
J Kucera, and J M Walro
January 1988, The Japanese journal of physiology,
J Kucera, and J M Walro
October 1987, Brain research bulletin,
J Kucera, and J M Walro
January 1979, Muscle & nerve,
J Kucera, and J M Walro
November 1993, Cell and tissue research,
Copied contents to your clipboard!