Intrathecal amitriptyline. Antinociceptive interactions with intravenous morphine and intrathecal clonidine, neostigmine, and carbamylcholine in rats. 1995

J C Eisenach, and G F Gebhart
Department of Anesthesia, Wake Forest University Medical Center, Winston-Salem, North Carolina, 27157-1009. USA.

BACKGROUND Systemically administered opioids induce analgesia in part by spinal noradrenergic, serotonergic, and cholinergic mechanisms. The current study tested whether antinociception from systemically administered opioids could therefore be enhanced by intrathecal injection of a monoamine reuptake inhibitor to potentiate the action of spinally released norepinephrine and serotonin (amitriptyline) and intrathecal injection of a cholinesterase inhibitor to potentiate the action of spinally released acetylcholine (neostigmine). METHODS Rats were prepared with chronic lumbar intrathecal and femoral intravenous catheters and nociceptive threshold was assessed by hind paw withdrawal to a radiant heat stimulus. An isobolographic design was used to distinguish between additive and synergistic interactions. RESULTS Intravenous morphine and intrathecal neostigmine, but not intrathecal amitriptyline, caused dose-dependent antinociception alone. Combining any two of these three treatments yielded a synergistic interaction compared to each alone, whereas combining all three yielded an additive interaction compared to each two-way interaction. Intrathecal amitriptyline did not affect antinociception from intrathecal clonidine or intrathecal carbamylcholine. CONCLUSIONS These data suggest that intrathecal doses of amitriptyline resulting in potentiation of intravenous morphine antinociception may not be adequate to block muscarinic receptors, because they did not affect carbamylcholine-induced antinociception. These results further support the relevance of spinal monoamine reuptake and cholinesterase inhibition to synergistically enhance analgesia from systemic opioids.

UI MeSH Term Description Entries
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D007278 Injections, Spinal Introduction of therapeutic agents into the spinal region using a needle and syringe. Injections, Intraspinal,Injections, Intrathecal,Intraspinal Injections,Intrathecal Injections,Spinal Injections,Injection, Intraspinal,Injection, Intrathecal,Injection, Spinal,Intraspinal Injection,Intrathecal Injection,Spinal Injection
D008297 Male Males
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009388 Neostigmine A cholinesterase inhibitor used in the treatment of myasthenia gravis and to reverse the effects of muscle relaxants such as gallamine and tubocurarine. Neostigmine, unlike PHYSOSTIGMINE, does not cross the blood-brain barrier. Synstigmin,Neostigmine Bromide,Neostigmine Methylsulfate,Polstigmine,Proserine,Prostigmin,Prostigmine,Prozerin,Syntostigmine,Bromide, Neostigmine,Methylsulfate, Neostigmine
D010277 Parasympathomimetics Drugs that mimic the effects of parasympathetic nervous system activity. Included here are drugs that directly stimulate muscarinic receptors and drugs that potentiate cholinergic activity, usually by slowing the breakdown of acetylcholine (CHOLINESTERASE INHIBITORS). Drugs that stimulate both sympathetic and parasympathetic postganglionic neurons (GANGLIONIC STIMULANTS) are not included here. Parasympathomimetic Agents,Parasympathomimetic Drugs,Parasympathomimetic Effect,Parasympathomimetic Effects,Agents, Parasympathomimetic,Drugs, Parasympathomimetic,Effect, Parasympathomimetic,Effects, Parasympathomimetic
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D003000 Clonidine An imidazoline sympatholytic agent that stimulates ALPHA-2 ADRENERGIC RECEPTORS and central IMIDAZOLINE RECEPTORS. It is commonly used in the management of HYPERTENSION. Catapres,Catapresan,Catapressan,Chlophazolin,Clofelin,Clofenil,Clonidine Dihydrochloride,Clonidine Hydrochloride,Clonidine Monohydrobromide,Clonidine Monohydrochloride,Clopheline,Dixarit,Gemiton,Hemiton,Isoglaucon,Klofelin,Klofenil,M-5041T,ST-155,Dihydrochloride, Clonidine,Hydrochloride, Clonidine,M 5041T,M5041T,Monohydrobromide, Clonidine,Monohydrochloride, Clonidine,ST 155,ST155
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug

Related Publications

J C Eisenach, and G F Gebhart
June 1995, Naunyn-Schmiedeberg's archives of pharmacology,
J C Eisenach, and G F Gebhart
January 1996, Regional anesthesia,
J C Eisenach, and G F Gebhart
June 2009, Korean journal of anesthesiology,
J C Eisenach, and G F Gebhart
May 1988, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!