Refined crystal structures of unligated adenylosuccinate synthetase from Escherichia coli. 1995

M M Silva, and B W Poland, and C R Hoffman, and H J Fromm, and R B Honzatko
Dept. of Biochemistry and Biophysics, Iowa State University, Ames 50011, USA.

Crystal structures of unligated adenylosuccinate synthetase from Escherichia coli in space groups P2(1) and P2(1)2(1)2(1) have been refined to R-factors of 0.199 and 0.206 against data to 2.0 and 2.5 A, respectively. Bond lengths and angles deviate from expected values by 0.011 A and 1.7 degrees for the P2(1) crystal form and by 0.015 A and 1.7 degrees for the P2(1)2(1)2(1) crystal form. The fold of the polypeptide chain is dominated by a central beta-sheet, which is composed of nine parallel strands and a tenth antiparallel strand. Extending off from this central beta-sheet are four subdomains. The four subdomains contribute loops of residues that are disordered or have high thermal parameters. At least three of these loops (residues 42 to 52, 120 to 131 and 298 to 304) contribute essential residues to the putative active site of the synthetase. In the absence of ligands, much of the active site of the synthetase exists in an ill-defined conformational state. Two, nearly independent regions contribute residues to the interface between polypeptide chains of the synthetase dimer. A pair of helices (H4 and H5) interact with their symmetry-equivalent mates by way of residues that are not conserved amongst the known sequences of the synthetase. The second interface region involves conserved residues belonging to structural elements that connect strands of the central beta-sheet. Residues putatively involved in the binding of IMP lie at or near the interface between polypeptide chains of the dimer. Of the four sequence elements putatively common to all GTP hydrolases, the synthetase has only the guanine recognition element and a glycine-rich loop (P-loop). Although the base recognition element is essentially identical with those of the p21 ras and G alpha proteins, the P-loop of the synthetase is extended in size relative to the P-loops of other GTP hydrolases. The P-loop has two acid residues (Asp13 and Glu14), which are found in the P-loops of only the synthetase family. Glu14 may be involved in the stabilization of the enlarged P-loop of the synthetase, whereas Asp13 may play a role in catalysis and in the coordination of Mg2+. The structural elements of the p21 ras and G alpha proteins responsible for binding Mg2+ are either absent from the synthetase or unavailable for the coordination of metal cations.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005818 Genetic Engineering Directed modification of the gene complement of a living organism by such techniques as altering the DNA, substituting genetic material by means of a virus, transplanting whole nuclei, transplanting cell hybrids, etc. Genetic Intervention,Engineering, Genetic,Intervention, Genetic,Genetic Interventions,Interventions, Genetic
D000265 Adenylosuccinate Synthase A carbon-nitrogen ligase. During purine ribonucleotide biosynthesis, this enzyme catalyzes the synthesis of adenylosuccinate from GTP; IMP; and aspartate with the formation of orthophosphate and GDP. EC 6.3.4.4. Adenylosuccinate Synthetase,Succino-AMP Synthetase,Succino AMP Synthetase,Synthase, Adenylosuccinate,Synthetase, Adenylosuccinate,Synthetase, Succino-AMP
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D016384 Consensus Sequence A theoretical representative nucleotide or amino acid sequence in which each nucleotide or amino acid is the one which occurs most frequently at that site in the different sequences which occur in nature. The phrase also refers to an actual sequence which approximates the theoretical consensus. A known CONSERVED SEQUENCE set is represented by a consensus sequence. Commonly observed supersecondary protein structures (AMINO ACID MOTIFS) are often formed by conserved sequences. Consensus Sequences,Sequence, Consensus,Sequences, Consensus
D017433 Protein Structure, Secondary The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to ALPHA-HELICES; BETA-STRANDS (which align to form BETA-SHEETS), or other types of coils. This is the first folding level of protein conformation. Secondary Protein Structure,Protein Structures, Secondary,Secondary Protein Structures,Structure, Secondary Protein,Structures, Secondary Protein

Related Publications

M M Silva, and B W Poland, and C R Hoffman, and H J Fromm, and R B Honzatko
June 1996, The Journal of biological chemistry,
M M Silva, and B W Poland, and C R Hoffman, and H J Fromm, and R B Honzatko
December 1996, Journal of molecular biology,
M M Silva, and B W Poland, and C R Hoffman, and H J Fromm, and R B Honzatko
October 1999, Archives of biochemistry and biophysics,
M M Silva, and B W Poland, and C R Hoffman, and H J Fromm, and R B Honzatko
November 1996, The Journal of biological chemistry,
M M Silva, and B W Poland, and C R Hoffman, and H J Fromm, and R B Honzatko
July 1987, Archives of biochemistry and biophysics,
M M Silva, and B W Poland, and C R Hoffman, and H J Fromm, and R B Honzatko
April 1988, Journal of molecular biology,
M M Silva, and B W Poland, and C R Hoffman, and H J Fromm, and R B Honzatko
November 1991, Archives of biochemistry and biophysics,
M M Silva, and B W Poland, and C R Hoffman, and H J Fromm, and R B Honzatko
February 2002, The Journal of biological chemistry,
M M Silva, and B W Poland, and C R Hoffman, and H J Fromm, and R B Honzatko
January 1985, The Journal of biological chemistry,
Copied contents to your clipboard!