Mechanism of impaired beta-adrenoceptor responsiveness in atopic sensitized airway smooth muscle. 1995

H Hakonarson, and D J Herrick, and M M Grunstein
Division of Pulmonary Medicine, Joseph Stokes Jr. Research Institute, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine 19104, USA.

Decreased airway relaxation to beta-adrenoceptor stimulation has been hypothesized as a potential mechanism leading to enhanced bronchoconstrictor responsiveness in asthma. In addressing potential mechanisms underlying this phenomenon, the relative contributions of beta-adrenoceptor-coupled transmembrane signaling mechanisms were examined in isolated rabbit tracheal smooth muscle (TSM) passively sensitized with serum from atopic asthmatic patients and in TSM comparably exposed to non-atopic (control) human serum. During half-maximal isometric contraction of the tissues with acetylcholine, relative to control TSM, the sensitized tissues exhibited significant attenuation of both their maximal relaxation (Rmax) and sensitivity (i.e., -log 50% Rmax) to cumulative administration of isoproterenol (P < 0.001) or prostaglandin (PG)E2 (P < 0.001). In contrast, the relaxation responses to forskolin, a diterpene that directly activates adenylate cyclase, were similar in both tissue groups. Extended studies demonstrated that the attenuated relaxation to isoproterenol and PGE2 in sensitized TSM was 1) ablated by pretreatment with the muscarinic M2-receptor antagonists methoctramine (10(-6) M) or gallamine (10(-4) M); 2) also inhibited by pretreatment with pertussis toxin (100 ng/ml), which ADP ribosylates the inhibitory G protein (G(i)) negatively coupled to adenylate cyclase activation; and 3) associated with diminished adenosine 3',5'-cyclic monophosphate accumulation in response to isoproterenol administration. Moreover, based on Western immunoblot analysis, we found that G(i) protein expression was increased in membrane fractions from sensitized TSM, related to enhanced expression of the G(i) alpha 3 subunit. Collectively, these observations provide new evidence that the impaired beta-adrenoceptor-mediated relaxation in atopic sensitized airways is associated with increased muscarinic M2 receptor/G(i) protein-coupled expression and function.

UI MeSH Term Description Entries
D006967 Hypersensitivity Altered reactivity to an antigen, which can result in pathologic reactions upon subsequent exposure to that particular antigen. Allergy,Allergic Reaction,Allergic Reactions,Allergies,Hypersensitivities,Reaction, Allergic,Reactions, Allergic
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000318 Adrenergic beta-Agonists Drugs that selectively bind to and activate beta-adrenergic receptors. Adrenergic beta-Receptor Agonists,beta-Adrenergic Agonists,beta-Adrenergic Receptor Agonists,Adrenergic beta-Agonist,Adrenergic beta-Receptor Agonist,Betamimetics,Receptor Agonists, beta-Adrenergic,Receptors Agonists, Adrenergic beta,beta-Adrenergic Agonist,beta-Adrenergic Receptor Agonist,Adrenergic beta Agonist,Adrenergic beta Agonists,Adrenergic beta Receptor Agonist,Adrenergic beta Receptor Agonists,Agonist, Adrenergic beta-Receptor,Agonist, beta-Adrenergic,Agonist, beta-Adrenergic Receptor,Agonists, Adrenergic beta-Receptor,Agonists, beta-Adrenergic,Agonists, beta-Adrenergic Receptor,Receptor Agonist, beta-Adrenergic,Receptor Agonists, beta Adrenergic,beta Adrenergic Agonist,beta Adrenergic Agonists,beta Adrenergic Receptor Agonist,beta Adrenergic Receptor Agonists,beta-Agonist, Adrenergic,beta-Agonists, Adrenergic,beta-Receptor Agonist, Adrenergic,beta-Receptor Agonists, Adrenergic

Related Publications

H Hakonarson, and D J Herrick, and M M Grunstein
November 2001, American journal of physiology. Lung cellular and molecular physiology,
H Hakonarson, and D J Herrick, and M M Grunstein
November 1992, Respiration physiology,
H Hakonarson, and D J Herrick, and M M Grunstein
September 1999, The Journal of clinical investigation,
H Hakonarson, and D J Herrick, and M M Grunstein
October 1990, Nihon Kyobu Shikkan Gakkai zasshi,
H Hakonarson, and D J Herrick, and M M Grunstein
February 1993, Clinical science (London, England : 1979),
H Hakonarson, and D J Herrick, and M M Grunstein
November 1998, The Journal of clinical investigation,
H Hakonarson, and D J Herrick, and M M Grunstein
October 2005, American journal of physiology. Lung cellular and molecular physiology,
H Hakonarson, and D J Herrick, and M M Grunstein
July 2007, Canadian journal of physiology and pharmacology,
H Hakonarson, and D J Herrick, and M M Grunstein
March 2002, American journal of physiology. Lung cellular and molecular physiology,
H Hakonarson, and D J Herrick, and M M Grunstein
January 1994, Life sciences,
Copied contents to your clipboard!