Mechanism of action of antimycobacterial activity of the new benzoxazinorifamycin KRM-1648. 1995

K Fujii, and H Saito, and H Tomioka, and T Mae, and K Hosoe
Department of Microbiology and Immunology, Shimane Medical University, Japan.

The mechanism of antimicrobial activity of KRM-1648 (KRM), a new rifamycin derivative with potent antimycobacterial activity, was studied. Both KRM and rifampin (RMP) inhibited RNA polymerases from Escherichia coli and Mycobacterium avium at low concentrations: the 50% inhibitory concentrations (IC50s) of KRM and RMP for E. coli RNA polymerase were 0.13 and 0.10 micrograms/ml, respectively, while the IC50s for M. avium RNA polymerase were 0.20 and 0.07 microgram/ml. Both KRM and RMP exerted weak inhibitory activity against Mycobacterium fortuitum RNA polymerase, rabbit thymus RNA polymerases, E. coli DNA polymerase I, and two types of reverse transcriptases. Uptake of 14C-KRM by M. avium reached 18,000 dpm/mg (dry weight) 1.5 h after incubation, while uptake by E. coli cells was slight. KRM was much more effective in inhibiting uptake of 14C-uracil than was RMP (IC50 of KRM, 0.04 microgram/ml; IC50 of RMP, 0.12 microgram/ml). These findings suggest, first, that the potent antimycobacterial activity of KRM is due to inhibition of bacterial RNA polymerase and, second, that the activity of KRM against target organisms depends on target cell wall permeability.

UI MeSH Term Description Entries
D008025 Ligases A class of enzymes that catalyze the formation of a bond between two substrate molecules, coupled with the hydrolysis of a pyrophosphate bond in ATP or a similar energy donor. (Dorland, 28th ed) EC 6. Ligase,Synthetases,Synthetase
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D009162 Mycobacterium avium A bacterium causing tuberculosis in domestic fowl and other birds. In pigs, it may cause localized and sometimes disseminated disease. The organism occurs occasionally in sheep and cattle. It should be distinguished from the M. avium complex, which infects primarily humans.
D009696 Nucleic Acids High molecular weight polymers containing a mixture of purine and pyrimidine nucleotides chained together by ribose or deoxyribose linkages. Nucleic Acid,Acid, Nucleic,Acids, Nucleic
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000904 Antibiotics, Antitubercular Substances obtained from various species of microorganisms that are, alone or in combination with other agents, of use in treating various forms of tuberculosis; most of these agents are merely bacteriostatic, induce resistance in the organisms, and may be toxic. Antitubercular Antibiotics
D012294 Rifamycins A group of ANTI-BACTERIAL AGENTS characterized by a chromophoric naphthohydroquinone group spanned by an aliphatic bridge not previously found in other known ANTI-BACTERIAL AGENTS. They have been isolated from fermentation broths of Streptomyces mediterranei. Rifamycin,Rifomycin,Rifomycins
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed

Related Publications

K Fujii, and H Saito, and H Tomioka, and T Mae, and K Hosoe
January 2000, Archivum immunologiae et therapiae experimentalis,
K Fujii, and H Saito, and H Tomioka, and T Mae, and K Hosoe
June 1993, International journal of leprosy and other mycobacterial diseases : official organ of the International Leprosy Association,
K Fujii, and H Saito, and H Tomioka, and T Mae, and K Hosoe
December 1996, Antimicrobial agents and chemotherapy,
K Fujii, and H Saito, and H Tomioka, and T Mae, and K Hosoe
October 1994, Antimicrobial agents and chemotherapy,
K Fujii, and H Saito, and H Tomioka, and T Mae, and K Hosoe
August 1996, Kekkaku : [Tuberculosis],
K Fujii, and H Saito, and H Tomioka, and T Mae, and K Hosoe
April 1996, Tubercle and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease,
K Fujii, and H Saito, and H Tomioka, and T Mae, and K Hosoe
February 1995, Antimicrobial agents and chemotherapy,
K Fujii, and H Saito, and H Tomioka, and T Mae, and K Hosoe
January 1999, International journal of antimicrobial agents,
K Fujii, and H Saito, and H Tomioka, and T Mae, and K Hosoe
October 1995, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!