Perforin and lymphocyte-mediated cytolysis. 1995

C C Liu, and P M Persechini, and J D Young
Laboratory of Molecular Immunology and Cell Biology, Rockefeller University, New York 10021, USA.

We have discussed in the previous sections the recent progress made toward elucidating the regulatory mechanism of perforin gene transcription and the domain structure of the perforin molecule. It appears that the expression of perforin is, at least partially, controlled at the transcription level through the interaction between killer cell-specific cis- and trans- acting factors. One of such cognate pairs, NF-P motif (an EBS-homologous motif) and NF-P2 (a killer cell-specific DNA-binding protein), has been described. The regulatory mechanism of gene transcription, however, is likely to involve multiple factors which act in a coordinated fashion to bring about the most efficient expression of perforin limited strictly to activated killer lymphocytes. Through studies using synthetic peptides and recombinant perforins, it has been suggested that the N-terminal region of the perforin molecule is an important, though not the only, domain responsible for the lytic activity. Further studies are warranted to elucidate the role(s) of other potential amphiphilic structures located in the central portion of the perforin molecule in the overall pore-forming activity. The molecular basis underlying the resistance of killer lymphocytes to perforin-mediated lysis still remains an open question. Preliminary results, however, suggest that the surface protein(s) restricted to killer cells may account for their self-protection against perforin. Based on recent studies using perforin-deficient mice, the involvement of perforin in lymphocyte-mediated cytolysis both in vivo and in vitro has been confirmed. Two functional roles, a direct (lytic) and an indirect (endocytosis enhancer; conduit), both of which may contribute critically to the cell-killing event can be attributed to perforin. The fact that lymphocytes may also employ perforin-independent killing mechanism(s), e.g. Fas-dependent pathway, is beyond the scope of this review. There is, nevertheless, no doubt that these alternative cytolytic mechanisms may also play important roles in immune effector and/or regulatory responses associated with killer lymphocytes. Obviously, we are still a long way from concluding on the functional relevance of each individual cytolytic mechanism seen in different physiopathological situations. Suffice it to say, however, that a wealth of information on lymphocyte-mediated killing has already emerged through the multidisciplinary efforts conducted in our and other laboratories that promise to further dissect this complicated event in the years to come.

UI MeSH Term Description Entries
D007111 Immunity, Cellular Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013602 T-Lymphocytes, Cytotoxic Immunized T-lymphocytes which can directly destroy appropriate target cells. These cytotoxic lymphocytes may be generated in vitro in mixed lymphocyte cultures (MLC), in vivo during a graft-versus-host (GVH) reaction, or after immunization with an allograft, tumor cell or virally transformed or chemically modified target cell. The lytic phenomenon is sometimes referred to as cell-mediated lympholysis (CML). These CD8-positive cells are distinct from NATURAL KILLER CELLS and NATURAL KILLER T-CELLS. There are two effector phenotypes: TC1 and TC2. Cell-Mediated Lympholytic Cells,Cytotoxic T Cells,Cytotoxic T Lymphocyte,Cytotoxic T-Lymphocytes,TC1 Cell,TC1 Cells,TC2 Cell,TC2 Cells,Cell Mediated Lympholytic Cells,Cell, Cell-Mediated Lympholytic,Cell, TC1,Cell, TC2,Cell-Mediated Lympholytic Cell,Cytotoxic T Cell,Cytotoxic T Lymphocytes,Cytotoxic T-Lymphocyte,Lymphocyte, Cytotoxic T,Lympholytic Cell, Cell-Mediated,Lympholytic Cells, Cell-Mediated,T Cell, Cytotoxic,T Lymphocyte, Cytotoxic,T Lymphocytes, Cytotoxic,T-Lymphocyte, Cytotoxic
D052899 Pore Forming Cytotoxic Proteins Proteins secreted from an organism which form membrane-spanning pores in target cells to destroy them. This is in contrast to PORINS and MEMBRANE TRANSPORT PROTEINS that function within the synthesizing organism and COMPLEMENT immune proteins. These pore forming cytotoxic proteins are a form of primitive cellular defense which are also found in human LYMPHOCYTES.

Related Publications

C C Liu, and P M Persechini, and J D Young
January 1992, Advances in immunology,
C C Liu, and P M Persechini, and J D Young
October 1992, Experientia,
C C Liu, and P M Persechini, and J D Young
February 1989, Immunology letters,
C C Liu, and P M Persechini, and J D Young
November 1996, The New England journal of medicine,
C C Liu, and P M Persechini, and J D Young
April 1988, Biochemistry,
C C Liu, and P M Persechini, and J D Young
January 1982, Advances in experimental medicine and biology,
C C Liu, and P M Persechini, and J D Young
January 1977, Cellular immunology,
C C Liu, and P M Persechini, and J D Young
January 1982, Advances in experimental medicine and biology,
C C Liu, and P M Persechini, and J D Young
November 2002, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!