The Vif protein of human and simian immunodeficiency viruses is packaged into virions and associates with viral core structures. 1995

H Liu, and X Wu, and M Newman, and G M Shaw, and B H Hahn, and J C Kappes
Department of Medicine, University of Alabama at Birmingham 35294, USA.

The vif gene of human and simian immunodeficiency viruses (HIV and SIV) encodes a late gene product that is essential for viral infectivity in natural target cells. Virions produced in the absence of Vif are abnormal in their ultrastructural morphology and are severely impaired in the ability to complete proviral DNA synthesis upon entry into new target cells. Because previous studies failed to detect Vif protein in virus particles, Vif is believed to influence virus infectivity indirectly, by affecting virion assembly, release, and/or maturation. In this report, we reexamined the possibility that Vif is a virion-associated protein. Utilizing high-titer Vif-specific antibodies, a sensitive immunoblot technique, and highly concentrated virus preparations, we detected a 23-kDa Vif-reactive protein in wild-type HIV type 1 (HIV-1) and a 27-kDa Vif-reactive protein in wild-type SIVSM virions. Neither protein was present in virions derived from vif-deficient HIV-1 and SIVSM proviral constructs. Vif protein content was similar among different strains of HIV-1 and was independent of the cell type (permissive or nonpermissive) used to produce the virus. To determine the subvirion localization of Vif, HIV-1 virions were treated with proteinase K or Triton X-100 to remove virion surface proteins and the viral membrane, respectively, purified through sucrose, and analyzed by immunoblot analysis. Vif protein content was not affected by the removal of external surface proteins or by the removal of the viral membrane and submembrane p17Gag matrix protein. Instead, Vif colocalized with viral core structures which sedimented at a density of 1.25 g/ml on linear sucrose gradients (enveloped HIV-1 particles sediment at a density of 1.17 g/ml). Finally, the amount of Vif protein packaged into virions was estimated to be on the order of 1 molecule of Vif for every 20 to 30 molecules of p24Gag, or between 60 and 100 molecules of Vif per particle. These results indicate that Vif represents an integral component of HIV and SIV particles and raise the possibility that it plays a direct role in early replication events.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011533 Proviruses Duplex DNA sequences in eukaryotic chromosomes, corresponding to the genome of a virus, that are transmitted from one cell generation to the next without causing lysis of the host. Proviruses are often associated with neoplastic cell transformation and are key features of retrovirus biology. Provirus
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006678 HIV Human immunodeficiency virus. A non-taxonomic and historical term referring to any of two species, specifically HIV-1 and/or HIV-2. Prior to 1986, this was called human T-lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). From 1986-1990, it was an official species called HIV. Since 1991, HIV was no longer considered an official species name; the two species were designated HIV-1 and HIV-2. AIDS Virus,HTLV-III,Human Immunodeficiency Viruses,Human T-Cell Lymphotropic Virus Type III,Human T-Lymphotropic Virus Type III,LAV-HTLV-III,Lymphadenopathy-Associated Virus,Acquired Immune Deficiency Syndrome Virus,Acquired Immunodeficiency Syndrome Virus,Human Immunodeficiency Virus,Human T Cell Lymphotropic Virus Type III,Human T Lymphotropic Virus Type III,Human T-Cell Leukemia Virus Type III,Immunodeficiency Virus, Human,Immunodeficiency Viruses, Human,Virus, Human Immunodeficiency,Viruses, Human Immunodeficiency,AIDS Viruses,Human T Cell Leukemia Virus Type III,Lymphadenopathy Associated Virus,Lymphadenopathy-Associated Viruses,Virus, AIDS,Virus, Lymphadenopathy-Associated,Viruses, AIDS,Viruses, Lymphadenopathy-Associated
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

H Liu, and X Wu, and M Newman, and G M Shaw, and B H Hahn, and J C Kappes
January 2003, Journal of virology,
H Liu, and X Wu, and M Newman, and G M Shaw, and B H Hahn, and J C Kappes
August 2001, Journal of virology,
H Liu, and X Wu, and M Newman, and G M Shaw, and B H Hahn, and J C Kappes
June 2001, Journal of virology,
H Liu, and X Wu, and M Newman, and G M Shaw, and B H Hahn, and J C Kappes
December 2000, Journal of virology,
H Liu, and X Wu, and M Newman, and G M Shaw, and B H Hahn, and J C Kappes
October 2002, Journal of virology,
H Liu, and X Wu, and M Newman, and G M Shaw, and B H Hahn, and J C Kappes
January 2014, Viruses,
H Liu, and X Wu, and M Newman, and G M Shaw, and B H Hahn, and J C Kappes
August 2007, Journal of virology,
H Liu, and X Wu, and M Newman, and G M Shaw, and B H Hahn, and J C Kappes
December 1988, AIDS research and human retroviruses,
H Liu, and X Wu, and M Newman, and G M Shaw, and B H Hahn, and J C Kappes
August 1992, Journal of virology,
H Liu, and X Wu, and M Newman, and G M Shaw, and B H Hahn, and J C Kappes
July 1993, Journal of virology,
Copied contents to your clipboard!