Subunit E of the vacuolar H(+)-ATPase of Hordeum vulgare L.: cDNA cloning, expression and immunological analysis. 1995

K J Dietz, and S Rudloff, and A Ageorges, and C Eckerskorn, and K Fischer, and B Arbinger
Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximilians-Universität Würzburg, Germany.

A tonoplast protein of 31 kDa apparent molecular mass (TpP 31) was isolated from two-dimensional gels. Amino acid sequences were determined from LysC endoproteinase-peptide fragments. Using degenerate oligonucleotides, a corresponding cDNA clone of 1034 bp was isolated from a barley leaf cDNA library. It encodes for subunit E of the vacuolar H(+)-ATPase, the first one identified in plants so far. The open reading frame extends over 681 bp, encoding a gene product of 227 amino acids and a calculated molecular weight of 26,228 g mol-1. Northern and Western blot analysis indicates constitutive expression of subunit E in all plant organs with only small effects of salt stress. Localization of TpP 31 at the tonoplast was confirmed in fractions of purified vacuolar membrane obtained by free-flow electrophoresis. Immunoprecipitation of newly synthesized 35S-labelled membrane proteins with anti-TpP 31 gave two additional bands with apparent molecular masses of about 53 and 62 kDa. Gel filtration after mild solubilization showed co-purification of TpP 31 with the 55 kDa subunit of the H(+)-ATPase. Both results provide evidence beyond the sequence homology that TpP 31 is a structural component of the vacuolar H(+)-ATPase.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K J Dietz, and S Rudloff, and A Ageorges, and C Eckerskorn, and K Fischer, and B Arbinger
July 1999, FEBS letters,
K J Dietz, and S Rudloff, and A Ageorges, and C Eckerskorn, and K Fischer, and B Arbinger
November 1998, Biochimica et biophysica acta,
K J Dietz, and S Rudloff, and A Ageorges, and C Eckerskorn, and K Fischer, and B Arbinger
December 2012, Genetika,
K J Dietz, and S Rudloff, and A Ageorges, and C Eckerskorn, and K Fischer, and B Arbinger
May 2008, Journal of genetics and genomics = Yi chuan xue bao,
K J Dietz, and S Rudloff, and A Ageorges, and C Eckerskorn, and K Fischer, and B Arbinger
February 1993, Biochemical and biophysical research communications,
K J Dietz, and S Rudloff, and A Ageorges, and C Eckerskorn, and K Fischer, and B Arbinger
May 1991, Biochemical and biophysical research communications,
K J Dietz, and S Rudloff, and A Ageorges, and C Eckerskorn, and K Fischer, and B Arbinger
July 1992, The American journal of physiology,
K J Dietz, and S Rudloff, and A Ageorges, and C Eckerskorn, and K Fischer, and B Arbinger
January 2001, Cytogenetics and cell genetics,
K J Dietz, and S Rudloff, and A Ageorges, and C Eckerskorn, and K Fischer, and B Arbinger
June 1995, DNA research : an international journal for rapid publication of reports on genes and genomes,
K J Dietz, and S Rudloff, and A Ageorges, and C Eckerskorn, and K Fischer, and B Arbinger
March 2003, TheScientificWorldJournal,
Copied contents to your clipboard!