Diethyldithiocarbamate protection against cisplatin nephrotoxicity: antioxidant system. 1995

S M Somani, and R Ravi, and L P Rybak
Department of Pharmacology, Southern Illinois University, School of Medicine, Springfield, USA.

This investigation elucidates the role of antioxidant system in cisplatin induced nephrotoxicity and the nephroprotection with diethyldithiocarbamate (DDTC). Male Wistar rats were injected with 1) cisplatin; 2) cisplatin+DDTC and 3) vehicle control. Rats were sacrificed three days post-treatment and the corticomedullary junction of the kidney was isolated adn were analyzed for GSH, GSSG, SOD, CAT, and GSH.Px. Serum creatinine increased (500% of control) following cisplatin administration which decreased to 200% of control with DDTC. Cisplatin treated rats showed depletion of GSH levels, while cisplatin+DDTC injected rats had GSH values similar to controls. SOD and GSH.Px activities were found to be 63 and 40% of control following cisplatin administration which increased to 109 and 75% of control with DDTC respectively. Our findings suggest that cisplatin nephrotoxicity is mediated by impaired activities of SOD and GSH-Px enzymes and by GSH depletion. The protective mechanism of DDTC against cisplatin nephrotoxicity is related to the prevention of GSH depletion and restoring SOD and GSH-Px activities in the kidney of rats.

UI MeSH Term Description Entries
D007674 Kidney Diseases Pathological processes of the KIDNEY or its component tissues. Disease, Kidney,Diseases, Kidney,Kidney Disease
D008297 Male Males
D002945 Cisplatin An inorganic and water-soluble platinum complex. After undergoing hydrolysis, it reacts with DNA to produce both intra and interstrand crosslinks. These crosslinks appear to impair replication and transcription of DNA. The cytotoxicity of cisplatin correlates with cellular arrest in the G2 phase of the cell cycle. Platinum Diamminodichloride,cis-Diamminedichloroplatinum(II),cis-Dichlorodiammineplatinum(II),Biocisplatinum,Dichlorodiammineplatinum,NSC-119875,Platidiam,Platino,Platinol,cis-Diamminedichloroplatinum,cis-Platinum,Diamminodichloride, Platinum,cis Diamminedichloroplatinum,cis Platinum
D004050 Ditiocarb A chelating agent that has been used to mobilize toxic metals from the tissues of humans and experimental animals. It is the main metabolite of DISULFIRAM. Diethyldithiocarbamate,Diethylcarbamodithioic Acid,Diethyldithiocarbamic Acid,Dithiocarb,Ditiocarb Sodium,Ditiocarb, Ammonium Salt,Ditiocarb, Bismuth Salt,Ditiocarb, Lead Salt,Ditiocarb, Potassium Salt,Ditiocarb, Sodium Salt,Ditiocarb, Sodium Salt, Trihydrate,Ditiocarb, Tin(4+) Salt,Ditiocarb, Zinc Salt,Imuthiol,Sodium Diethyldithiocarbamate,Thiocarb,Zinc Diethyldithiocarbamate,Ammonium Salt Ditiocarb,Bismuth Salt Ditiocarb,Diethyldithiocarbamate, Sodium,Diethyldithiocarbamate, Zinc,Lead Salt Ditiocarb,Potassium Salt Ditiocarb,Sodium Salt Ditiocarb,Sodium, Ditiocarb,Zinc Salt Ditiocarb
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D005979 Glutathione Peroxidase An enzyme catalyzing the oxidation of 2 moles of GLUTATHIONE in the presence of HYDROGEN PEROXIDE to yield oxidized glutathione and water. Cytosolic Glutathione Peroxidase,Glutathione Lipoperoxidase,Selenoglutathione Peroxidase,Glutathione Peroxidase, Cytosolic,Lipoperoxidase, Glutathione,Peroxidase, Glutathione,Peroxidase, Selenoglutathione
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous
D013482 Superoxide Dismutase An oxidoreductase that catalyzes the reaction between SUPEROXIDES and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. Hemocuprein,Ag-Zn Superoxide Dismutase,Cobalt Superoxide Dismutase,Cu-Superoxide Dismutase,Erythrocuprein,Fe-Superoxide Dismutase,Fe-Zn Superoxide Dismutase,Iron Superoxide Dismutase,Manganese Superoxide Dismutase,Mn-SOD,Mn-Superoxide Dismutase,Ag Zn Superoxide Dismutase,Cu Superoxide Dismutase,Dismutase, Ag-Zn Superoxide,Dismutase, Cobalt Superoxide,Dismutase, Cu-Superoxide,Dismutase, Fe-Superoxide,Dismutase, Fe-Zn Superoxide,Dismutase, Iron Superoxide,Dismutase, Manganese Superoxide,Dismutase, Mn-Superoxide,Dismutase, Superoxide,Fe Superoxide Dismutase,Fe Zn Superoxide Dismutase,Mn SOD,Mn Superoxide Dismutase,Superoxide Dismutase, Ag-Zn,Superoxide Dismutase, Cobalt,Superoxide Dismutase, Fe-Zn,Superoxide Dismutase, Iron,Superoxide Dismutase, Manganese
D015500 Chloramphenicol O-Acetyltransferase An enzyme that catalyzes the acetylation of chloramphenicol to yield chloramphenicol 3-acetate. Since chloramphenicol 3-acetate does not bind to bacterial ribosomes and is not an inhibitor of peptidyltransferase, the enzyme is responsible for the naturally occurring chloramphenicol resistance in bacteria. The enzyme, for which variants are known, is found in both gram-negative and gram-positive bacteria. EC 2.3.1.28. CAT Enzyme,Chloramphenicol Acetyltransferase,Chloramphenicol Transacetylase,Acetyltransferase, Chloramphenicol,Chloramphenicol O Acetyltransferase,Enzyme, CAT,O-Acetyltransferase, Chloramphenicol,Transacetylase, Chloramphenicol

Related Publications

S M Somani, and R Ravi, and L P Rybak
August 1996, Fundamental and applied toxicology : official journal of the Society of Toxicology,
S M Somani, and R Ravi, and L P Rybak
January 1998, Molecular and cellular biochemistry,
S M Somani, and R Ravi, and L P Rybak
January 1989, Cancer chemotherapy and pharmacology,
S M Somani, and R Ravi, and L P Rybak
April 1991, Journal of clinical oncology : official journal of the American Society of Clinical Oncology,
S M Somani, and R Ravi, and L P Rybak
October 1997, Pharmacology & toxicology,
S M Somani, and R Ravi, and L P Rybak
December 2006, Cancer chemotherapy and pharmacology,
S M Somani, and R Ravi, and L P Rybak
January 2003, Medical oncology (Northwood, London, England),
S M Somani, and R Ravi, and L P Rybak
February 2004, Mediators of inflammation,
Copied contents to your clipboard!