Primer for bonding resin to metal. 1995

Y Taira, and Y Imai
Department of Fixed Prosthodontics, School of Dentistry, Nagasaki University, Japan.

OBJECTIVE The purpose was to examine the effect on the bond strength and durability of a resin bond to metal of modification of a primer consisting of thiophosphoric methacrylate with phosphoric methacrylates and/or benzoyl peroxide. METHODS Acrylic rods were bonded with a luting resin consisting of poly(methyl methacrylate) powder and a mixture of methyl methacrylate and tributylborane initiator to silver-palladium alloy (Ag-Pd), gold-silver alloy (Au-Ag), cobalt-chromium alloy (Co-Cr), and titanium (Ti) surfaces treated with various primers. The bonded samples were thermocycled for 2,000 cycles and the mean bond strengths were compared using one-way ANOVA and Duncan's new multiple range test at p < 0.05. RESULTS Using primers of thiophosphoric methacrylate or phosphoric methacrylates alone, the bond strengths of Ag-Pd decreased significantly (p < 0.05) after thermocycling. The durability was significantly improved (p < 0.05) when thiophosphoric methocrylate was used in combination with the phosphate monomers. The additional use of benzoyl peroxide and heat treatment resulted in a significant increase (p < 0.05) in the durability of two groups; the mean bond strengths over 20 MPa and the lowest values remained unchanged even after 2,000 thermocycles. CONCLUSIONS The highest level of bond strength and durability to dental noble metals was achieved using a mixture of thiophosphoric and phosphoric methacrylates and benzoyl peroxide. These bond strength results are comparable to values obtained for base metals.

UI MeSH Term Description Entries
D008422 Materials Testing The testing of materials and devices, especially those used for PROSTHESES AND IMPLANTS; SUTURES; TISSUE ADHESIVES; etc., for hardness, strength, durability, safety, efficacy, and biocompatibility. Biocompatibility Testing,Biocompatible Materials Testing,Hemocompatibility Testing,Testing, Biocompatible Materials,Testing, Hemocompatible Materials,Hemocompatibility Testings,Hemocompatible Materials Testing,Materials Testing, Biocompatible,Materials Testing, Hemocompatible,Testing, Biocompatibility,Testing, Hemocompatibility,Testing, Materials,Testings, Biocompatibility
D008689 Methacrylates Acrylic acids or acrylates which are substituted in the C-2 position with a methyl group. Methacrylate
D009943 Organophosphorus Compounds Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS. Organophosphorus Compound,Organopyrophosphorus Compound,Organopyrophosphorus Compounds,Compound, Organophosphorus,Compound, Organopyrophosphorus,Compounds, Organophosphorus,Compounds, Organopyrophosphorus
D010165 Palladium A chemical element having an atomic weight of 106.4, atomic number of 46, and the symbol Pd. It is a white, ductile metal resembling platinum, and following it in abundance and importance of applications. It is used in dentistry in the form of gold, silver, and copper alloys.
D010756 Phosphoric Acids Inorganic derivatives of phosphoric acid (H3PO4). Note that organic derivatives of phosphoric acids are listed under ORGANOPHOSPHATES. Pyrophosphoric Acids,Acids, Phosphoric,Acids, Pyrophosphoric
D001840 Dental Bonding An adhesion procedure for orthodontic attachments, such as plastic DENTAL CROWNS. This process usually includes the application of an adhesive material (DENTAL CEMENTS) and letting it harden in-place by light or chemical curing. Bonding, Dental,Cure of Orthodontic Adhesives,Curing, Dental Cement,Dental Cement Curing,Orthodontic Adhesives Cure
D002858 Chromium Alloys Specific alloys not less than 85% chromium and nickel or cobalt, with traces of either nickel or cobalt, molybdenum, and other substances. They are used in partial dentures, orthopedic implants, etc. Chromium-Cobalt Alloys,Chromium-Nickel Alloys,Cobalt-Chromium Alloys,Nickel-Chromium Alloys,Alloys, Chromium,Alloys, Chromium-Cobalt,Alloys, Chromium-Nickel,Alloys, Cobalt-Chromium,Alloys, Nickel-Chromium,Chromium Cobalt Alloys,Chromium Nickel Alloys,Cobalt Chromium Alloys,Nickel Chromium Alloys
D003722 Dental Alloys A mixture of metallic elements or compounds with other metallic or metalloid elements in varying proportions for use in restorative or prosthetic dentistry. Alloy, Dental,Alloys, Dental,Dental Alloy
D003738 Dental Cements Substances used to bond COMPOSITE RESINS to DENTAL ENAMEL and DENTIN. These bonding or luting agents are used in restorative dentistry, ROOT CANAL THERAPY; PROSTHODONTICS; and ORTHODONTICS. Dental Adhesives,Luting Agents,Orthodontic Adhesives,Cement, Dental,Cements, Dental,Dental Cement,Adhesive, Dental,Adhesive, Orthodontic,Adhesives, Dental,Adhesives, Orthodontic,Dental Adhesive,Luting Agent,Orthodontic Adhesive
D006047 Gold Alloys Alloys that contain a high percentage of gold. They are used in restorative or prosthetic dentistry. Gold Alloy,Alloy, Gold,Alloys, Gold

Related Publications

Y Taira, and Y Imai
November 2015, Korean journal of orthodontics,
Y Taira, and Y Imai
June 1993, Journal of the California Dental Association,
Y Taira, and Y Imai
February 2024, Journal of the mechanical behavior of biomedical materials,
Y Taira, and Y Imai
January 2023, Research (Washington, D.C.),
Y Taira, and Y Imai
March 1994, Journal of the American Dental Association (1939),
Y Taira, and Y Imai
August 1986, The Journal of prosthetic dentistry,
Y Taira, and Y Imai
August 1997, The Journal of prosthetic dentistry,
Y Taira, and Y Imai
January 1982, DE; the journal of dental engeering,
Copied contents to your clipboard!