Keratocyte gap junctional communication in normal and wounded rabbit corneas and human corneas. 1995

M A Watsky
Department of Physiology and Biophysics, University of Tennessee, Memphis 38163, USA.

OBJECTIVE Several studies have indicated the anatomic and biochemical presence of gap junctions in corneal keratocytes. The current study was designed to demonstrate that these gap junctions are functional in rabbit and human corneal keratocytes. This study also examined dye coupling between keratocytes migrating into the wound region of freeze-wounded rabbit corneas. METHODS Freeze wounds were created on anesthetized rabbit corneas using a liquid nitrogen-cooled brass probe. Freeze-wounded corneas were examined at several time periods from days 0 to 5 after wounding. Nonwounded rabbit corneas also were examined. Human corneal buttons were examined immediately after removal from patients who underwent keratoplasty. Gap junctional coupling was examined by microinjecting carboxyfluorescein from microelectrodes into the basal-most keratocytes and capturing dye spread images with a cooled charge coupled device camera. RESULTS Significant dye spread was observed between cells in the unwounded areas of corneas at wound time 0 and between cells migrating into the wound areas as early as 24 hours after wounding. In control corneas, dye spread to as many as 50 cells from the source cell. Dye spread also was seen between keratocytes in human corneas with pseudophakic bullous keratopathy and keratoconus. CONCLUSIONS Gap junctions observed in keratocytes from normal rabbit corneas are functional. Gap junctions also are present and functional in keratocytes within unwounded and wounded regions of freeze-injured corneas. In addition, functional gap junctions are present between keratocytes in human corneas. This study confirms the long-held contention that corneal keratocytes form a large intercommunicating network within the corneal stroma.

UI MeSH Term Description Entries
D008297 Male Males
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002102 Cadaver A dead body, usually a human body. Corpse,Cadavers,Corpses
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D003315 Cornea The transparent anterior portion of the fibrous coat of the eye consisting of five layers: stratified squamous CORNEAL EPITHELIUM; BOWMAN MEMBRANE; CORNEAL STROMA; DESCEMET MEMBRANE; and mesenchymal CORNEAL ENDOTHELIUM. It serves as the first refracting medium of the eye. It is structurally continuous with the SCLERA, avascular, receiving its nourishment by permeation through spaces between the lamellae, and is innervated by the ophthalmic division of the TRIGEMINAL NERVE via the ciliary nerves and those of the surrounding conjunctiva which together form plexuses. (Cline et al., Dictionary of Visual Science, 4th ed) Corneas
D005260 Female Females
D005452 Fluoresceins A family of spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one derivatives. These are used as dyes, as indicators for various metals, and as fluorescent labels in immunoassays. Tetraiodofluorescein
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D005615 Freezing Liquids transforming into solids by the removal of heat. Melting

Related Publications

M A Watsky
January 1981, Annual review of physiology,
M A Watsky
February 1994, Current eye research,
M A Watsky
December 2012, Pathologie-biologie,
M A Watsky
January 1989, Trends in neurosciences,
M A Watsky
January 2007, Progress in biophysics and molecular biology,
M A Watsky
January 1970, Archives of ophthalmology (Chicago, Ill. : 1960),
M A Watsky
March 1999, Lung cancer (Amsterdam, Netherlands),
M A Watsky
December 2008, Journal of cellular and molecular medicine,
Copied contents to your clipboard!