The reduction of membrane-bound dopamine beta-monooxygenase in resealed chromaffin granule ghosts. Is intragranular ascorbic acid a mediator for extragranular reducing equivalents? 1995

K Wimalasena, and D S Wimalasena
Department of Chemistry, Wichita State University, Kansas 67260-0051, USA.

The role of internal and external reductants in the dopamine beta-monooxygenase (D beta M)-catalyzed conversion of dopamine to norepinephrine has been investigated in resealed chromaffin granule ghosts. The rate of norepinephrine production was not affected by the exclusion of internal ascorbate. The omission of ascorbate from the external medium drastically reduced the norepinephrine production without affecting the net rate of dopamine uptake. In the presence of the external reductant, the internal ascorbate levels were constant throughout the incubation period. The rate of norepinephrine production was not affected when ghosts were resealed to contain the D beta M reduction site inhibitor, imino-D-glucoascorbate. Ghosts incubated with external imino-D-glucoascorbate reduced the norepinephrine production. The weak D beta M reductant, 6-amino-L-ascorbic acid, was found to be a good external reductant for granule ghosts. The outcome of the above experiments was not altered when dopamine was replaced with the reductively inactive D beta M substrate, tyramine. These results and the known topology of membrane-bound D beta M disfavor the direct reduction of the enzyme by the external reductant. Our observations are consistent with the hypothesis that external ascorbate is the sole source of reducing equivalents for D beta M monooxygenation and that internal soluble ascorbate (or dopamine) may not directly reduce or mediate the reduction of membrane-bound D beta M in resealed granule ghosts.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D009655 Octopamine An alpha-adrenergic sympathomimetic amine, biosynthesized from tyramine in the CNS and platelets and also in invertebrate nervous systems. It is used to treat hypotension and as a cardiotonic. The natural D(-) form is more potent than the L(+) form in producing cardiovascular adrenergic responses. It is also a neurotransmitter in some invertebrates. Norsynephrine,p-Octopamine,para-Octopamine,4-Octopamine,Norsympatol,alpha-(Aminoethyl)-4-hydroxybenzenemethanol
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002837 Chromaffin Granules Organelles in CHROMAFFIN CELLS located in the adrenal glands and various other organs. These granules are the site of the synthesis, storage, metabolism, and secretion of EPINEPHRINE and NOREPINEPHRINE. Chromaffin Granule,Granule, Chromaffin
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004299 Dopamine beta-Hydroxylase Dopamine beta-Monooxygenase,Dopamine beta Hydroxylase,Dopamine beta Monooxygenase,beta-Hydroxylase, Dopamine,beta-Monooxygenase, Dopamine

Related Publications

K Wimalasena, and D S Wimalasena
February 1987, The Journal of biological chemistry,
K Wimalasena, and D S Wimalasena
June 1991, The Journal of biological chemistry,
K Wimalasena, and D S Wimalasena
October 1992, Biochemical and biophysical research communications,
K Wimalasena, and D S Wimalasena
January 1977, FEBS letters,
K Wimalasena, and D S Wimalasena
December 1981, The Journal of biological chemistry,
K Wimalasena, and D S Wimalasena
June 1986, The Journal of biological chemistry,
K Wimalasena, and D S Wimalasena
December 1988, The Journal of biological chemistry,
K Wimalasena, and D S Wimalasena
November 1981, Biochemistry,
Copied contents to your clipboard!