Use of an oligoribonucleotide containing the polypurine tract sequence as a primer by HIV reverse transcriptase. 1995

G M Fuentes, and L Rodríguez-Rodríguez, and P J Fay, and R A Bambara
Department of Microbiology & Immunology, University of Rochester, School of Medicine and Dentistry, New York 14642, USA.

A primary site for initiation of plus strand DNA synthesis in human immunodeficiency virus (HIV) corresponds to a 19-nucleotide-long purine rich sequence located just upstream of the U3 region, designated the polypurine tract (PPT). The HIV reverse transcriptase (RT) uses its RNase H activity to cut the genomic RNA after minus strand DNA synthesis. A plus strand PPT primer is formed, extended, and then removed. In vitro, the HIV-RT recognizes this primer specifically, using it much more efficiently than other RNA primers. However, the PPT still primes significantly less efficiently than DNA primers. The 19-nucleotide PPT primer is partially resistant to degradation when compared with other oligoribonucleotides. Prior to initiation of DNA synthesis, several nucleotides are removed by the RT from the 3' ends of some of the PPT primers. Cleavage is enhanced in the absence of dNTPs. We suggest that DNA synthesis suppresses primer degradation, so that primer extension and cleavage occur in proper sequence. As a result of 3' end degradation, PPT elongation products contain 5'-RNA segments from 16 to 19 nucleotides in length. These shorter segments are also generated from a longer transcript containing the PPT sequence, indicating that they are not created as a result of binding of the RT to the 5' end of the PPT oligoribonucleotide. Full-length and shorter versions of the PPT primers are cleaved from the extended DNA by RT. These experiments show that HIV-RT has a specificity to generate a primer in the region of the PPT but that the ends of the primer are not well defined.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011687 Purines A series of heterocyclic compounds that are variously substituted in nature and are known also as purine bases. They include ADENINE and GUANINE, constituents of nucleic acids, as well as many alkaloids such as CAFFEINE and THEOPHYLLINE. Uric acid is the metabolic end product of purine metabolism.
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D006678 HIV Human immunodeficiency virus. A non-taxonomic and historical term referring to any of two species, specifically HIV-1 and/or HIV-2. Prior to 1986, this was called human T-lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). From 1986-1990, it was an official species called HIV. Since 1991, HIV was no longer considered an official species name; the two species were designated HIV-1 and HIV-2. AIDS Virus,HTLV-III,Human Immunodeficiency Viruses,Human T-Cell Lymphotropic Virus Type III,Human T-Lymphotropic Virus Type III,LAV-HTLV-III,Lymphadenopathy-Associated Virus,Acquired Immune Deficiency Syndrome Virus,Acquired Immunodeficiency Syndrome Virus,Human Immunodeficiency Virus,Human T Cell Lymphotropic Virus Type III,Human T Lymphotropic Virus Type III,Human T-Cell Leukemia Virus Type III,Immunodeficiency Virus, Human,Immunodeficiency Viruses, Human,Virus, Human Immunodeficiency,Viruses, Human Immunodeficiency,AIDS Viruses,Human T Cell Leukemia Virus Type III,Lymphadenopathy Associated Virus,Lymphadenopathy-Associated Viruses,Virus, AIDS,Virus, Lymphadenopathy-Associated,Viruses, AIDS,Viruses, Lymphadenopathy-Associated
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012194 RNA-Directed DNA Polymerase An enzyme that synthesizes DNA on an RNA template. It is encoded by the pol gene of retroviruses and by certain retrovirus-like elements. EC 2.7.7.49. DNA Polymerase, RNA-Directed,RNA-Dependent DNA Polymerase,Reverse Transcriptase,RNA Transcriptase,Revertase,DNA Polymerase, RNA Directed,DNA Polymerase, RNA-Dependent,RNA Dependent DNA Polymerase,RNA Directed DNA Polymerase

Related Publications

G M Fuentes, and L Rodríguez-Rodríguez, and P J Fay, and R A Bambara
January 2018, The Journal of biological chemistry,
G M Fuentes, and L Rodríguez-Rodríguez, and P J Fay, and R A Bambara
November 2003, The Journal of biological chemistry,
G M Fuentes, and L Rodríguez-Rodríguez, and P J Fay, and R A Bambara
December 1999, The Journal of biological chemistry,
G M Fuentes, and L Rodríguez-Rodríguez, and P J Fay, and R A Bambara
March 2001, The EMBO journal,
G M Fuentes, and L Rodríguez-Rodríguez, and P J Fay, and R A Bambara
May 2002, The Journal of biological chemistry,
G M Fuentes, and L Rodríguez-Rodríguez, and P J Fay, and R A Bambara
April 1998, Nucleosides & nucleotides,
G M Fuentes, and L Rodríguez-Rodríguez, and P J Fay, and R A Bambara
February 2015, Nucleic acids research,
Copied contents to your clipboard!