Stepwise assembly of a relaxosome at the F plasmid origin of transfer. 1995

M T Howard, and W C Nelson, and S W Matson
Department of Biology, University of North Carolina Chapel Hill 27599, USA.

A central step in the transfer of genetic information during bacterial conjugation of the Escherichia coli F plasmid involves the formation of a protein-DNA complex, called the relaxosome, at the origin of transfer. During conjugation, the relaxosome introduces a site- and strand-specific nick from which the physical transfer of a single strand of DNA is initiated. At least two F-encoded proteins, TraIp (traI gene product) and TraYp (traY gene product), and one host-encoded protein, integration host factor, are involved in this process. In this report, we use DNase I protection and electron microscopic techniques to investigate the mechanism of relaxosome formation. Our results show that TraYp and integration host factor form a protein-DNA complex that facilitates the binding of TraIp to assemble a relaxosome capable of introducing a site- and strand-specific nick at the origin of transfer. This nick is identical to that observed during conjugation.

UI MeSH Term Description Entries
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003227 Conjugation, Genetic A parasexual process in BACTERIA; ALGAE; FUNGI; and ciliate EUKARYOTA for achieving exchange of chromosome material during fusion of two cells. In bacteria, this is a uni-directional transfer of genetic material; in protozoa it is a bi-directional exchange. In algae and fungi, it is a form of sexual reproduction, with the union of male and female gametes. Bacterial Conjugation,Conjugation, Bacterial,Genetic Conjugation
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004720 Endonucleases Enzymes that catalyze the hydrolysis of the internal bonds and thereby the formation of polynucleotides or oligonucleotides from ribo- or deoxyribonucleotide chains. EC 3.1.-. Endonuclease
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005144 F Factor A plasmid whose presence in the cell, either extrachromosomal or integrated into the BACTERIAL CHROMOSOME, determines the "sex" of the bacterium, host chromosome mobilization, transfer via conjugation (CONJUGATION, GENETIC) of genetic material, and the formation of SEX PILI. Resistance Transfer Factor,Sex Factor F,Sex Factor, Bacterial,Bacterial Sex Factor,Bacterial Sex Factors,F Plasmid,F Plasmids,Factor, Bacterial Sex,Factors, Bacterial Sex,Fertility Factor, Bacterial,Sex Factors, Bacterial,Bacterial Fertility Factor,Bacterial Fertility Factors,F Factors,Factor F, Sex,Factor Fs, Sex,Factor, Bacterial Fertility,Factor, F,Factor, Resistance Transfer,Factors, Bacterial Fertility,Factors, F,Factors, Resistance Transfer,Fertility Factors, Bacterial,Fs, Sex Factor,Plasmid, F,Plasmids, F,Resistance Transfer Factors,Sex Factor Fs,Transfer Factor, Resistance,Transfer Factors, Resistance
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

M T Howard, and W C Nelson, and S W Matson
August 2003, Nucleic acids research,
M T Howard, and W C Nelson, and S W Matson
September 1990, Proceedings of the National Academy of Sciences of the United States of America,
M T Howard, and W C Nelson, and S W Matson
February 2007, Molecular microbiology,
M T Howard, and W C Nelson, and S W Matson
October 1974, Journal of bacteriology,
M T Howard, and W C Nelson, and S W Matson
March 1995, Molecular microbiology,
M T Howard, and W C Nelson, and S W Matson
October 1994, The Journal of biological chemistry,
M T Howard, and W C Nelson, and S W Matson
January 2018, Scientific reports,
M T Howard, and W C Nelson, and S W Matson
February 1994, Molecular microbiology,
M T Howard, and W C Nelson, and S W Matson
October 1994, Journal of bacteriology,
Copied contents to your clipboard!